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ABSTRACT
We introduce and address the problem of video object coseg-
mentation, which concerns the task of segmenting the com-
mon object in a pair of video sequences. We present a new
algorithm that works on super-voxels in videos to solve this
task. The algorithm computes i) the intra-video relative mo-
tion derived from dense optical flow and ii) the inter-video
co-features based on Gaussian mixture models. The experi-
mental results show that, by integrating the intra-video and
inter-video information, our algorithm is able to obtain bet-
ter results of segmenting video objects.

Categories and Subject Descriptors
I.4.6 [Image Processing and Computer Vision]: Seg-
mentation—Pixel classification

General Terms
Algorithms
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1. INTRODUCTION
An important issue of image segmentation is that the re-

gions found by a typical image segmentation algorithm usu-
ally tend to be fragmented or lack semantical meanings. The
concept of image cosegmentation, which is introduced by
Rother et al. [16], provides a way to implicitly define the
region of interest via multiple observations of common ob-
jects. The idea of making use of multiple observations can
be applied to other tasks too. For example, an image can be
associated with a large image database to solve the recog-
nition problem [12]. Furthermore, in iCoseg [1], the system
recommends the user where to draw scribbles for cosegment-
ing a foreground object from a group of related images.

The cosegmentation algorithm of Rother et al. [16] is
based on the common appearance histogram, which is used
as a global constraint in Markov random field (MRF) opti-
mization. They define an objective function that incorpo-
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rates the standard MRF terms with the global constraint.
The MRF terms encode the intra-image spatial coherence
and the global constraint encodes the inter-image common-
region similarity. Rother et al. use the trust-region graph
cut to minimize the objective function and segment the com-
mon regions from the input image pair. Recent work on
image cosegmentation shows that the constraint of common
appearance histogram can also be used as the regularization
term [13] or the reward term [8]. In [18], Vicente et al. com-
pare the aforementioned methods ([8, 13, 16]), and propose
a dual decomposition technique to optimize the cosegmen-
tation objective function. In addition, the rank-one global
term is proposed in [14] to simultaneously segment multi-
ple images that may contain common objects of different
scales. Another approach to cosegmentation is to model it
as a clustering problem, as presented in [4, 9]. Addition-
ally, the co-saliency map [10] can be also used with graph
cut to perform cosegmentation. The notion of object coseg-
mentation presented in [19] is to learn a similarity scoring
function for choosing the common object from a pool of can-
didate object-like segmentations derived by the algorithm of
[3].

The goal of this paper is to address the problem of video
object cosegmentation, which is aimed at segmenting the
common object in a pair of input video sequences. Our al-
gorithm works on a super-voxel representation of videos. We
introduce a motion-based video grouping method that can
identify candidate common object regions according to rel-
ative motion. The common object appearance is then char-
acterized by a Gaussian mixture model. The experimental
results show that, by integrating the intra-video motion cues
and the inter-video co-features, our algorithm is able to ob-
tain better results of segmenting video objects than applying
image cosegmentation or conventional video segmentation.

2. ALGORITHM
We propose a video cosegmentation algorithm that can ex-

tract the common object regions from a given pair of video
sequences. The algorithm includes three main stages: The
first stage is to partition each video sequence into a fore-
ground set and a background set, according to the motion
similarities. The second stage aims to construct a Gaussian
mixture model (GMM) for the joint foreground set across
the two input video sequences. For each video sequence, we
also construct a GMM for the intra-video non-common re-
gions. In the third stage, the common object in each video
sequence is segmented according to the GMMs by solving
graph cuts. Fig. 1 illustrates the proposed algorithm.



Figure 1: Flowchart of the proposed algorithm. Each input video sequence is roughly grouped into foreground
regions and background regions according to the motion similarity. The matched candidate regions are used
to initialize the co-feature Gaussian mixture model. Iteratively, we use graph cut to segment the common
object regions, and relearn the parameters of GMMs from current segmentation results.

2.1 Space-Time Graph Construction
We adopt a similar space-time graph structure used in

[7] as the video representation. Given a video sequence,
we construct a 3D graph from the video volume using the
graph-based over-segmentation technique [5]. To model the
variations caused by object motion, we apply dense optical
flow [11] to video frames. The nodes in the space-time graph
are the pixels in each frame. Each node xt

p in frame t con-
nects to its 8-connected neighbors {xt

q|xt
q ∈ N(xt

p)} in the
same frame, where N(xt

p) denotes the 8-connected neigh-
borhood of xt

p. Based on the dense optical flow, we may
follow the backward flow vector of node xt

p to find its cor-

responding node xt−1
p′ in the previous frame, and then we

connect node xt
p to node xt−1

p′ and all its neighbors N(xt−1
p′ ).

Similarly, we connect node xt
p to node xt+1

p′ and all its neigh-

bors N(xt+1
p′ ) in the next frame. In comparison with apply-

ing image over-segmentation to each frame independently,
the proposed approach to space-time over-segmentation pro-
vides better temporal coherence.

As proposed in [5], over-segmentation can be computed by
building a minimum spanning tree on a graph. Two regions
are merged if the appearance difference between them is less
than their individual internal variations. We use two differ-
ent values for the threshold of internal variation to obtain
coarse-level super-voxels (space-time over-segmentation) and
fine-level super-voxels. Owing to the merging process of min-
imum spanning tree, the coarse-level super-voxels must con-
tain at least one fine-level super-voxels.

2.2 Features for Super-voxels
We use three kinds of features to describe a super-voxel:

color, texture, and relative motion. The Cb and Cr chroma
channels are used to represent the color appearance for fine-
level super-voxels. For each color channel, we compute the
average color values over all pixels in a fine-level super-voxel.
The Y luma channel is discarded to prevent problems caused
by illumination variations across video sequences.

The texture feature is also derived from the chroma chan-
nels. We apply the maximum response (MR) filter bank
[6] to each chroma channel. The MR filter bank consists

of anisotropic Gaussian-like filters, which provide features
such as edges and ridges. We select a subset of the MR filter
bank (MRS4), which are invariant to scale and orientation
changes. As is done for the color feature, the filter responses
are averaged over a super-voxel to derive the texture feature.

Since the fine-level super-voxels have lower internal vari-
ations, they do not exhibit much textureness. Therefore
we only compute the MRS4 features for coarse-level super-
voxels. All fine-level super-voxel inherit the MRS4 features
from their corresponding coarse-level super-voxels. Notice
that the fine-level super-voxels are the actual building blocks
of common object regions. The coarse-level super-voxels are
simply used for the computation of texture features.

2.3 Relative Motion Segmentation
We present a new motion-based feature called the relative

motion (RM) as the third type of feature for super-voxels.
Super-voxels with similar relative motion are grouped by
spectral clustering [15, 17]. We use relative motion to char-
acterize the motion coherence of video objects. An example
of grouped relative motion is shown in the second row of
Fig. 2.

Given the dense flow Fx computed at each pixel x, a rel-
ative motion matrix R can be defined over T frames by

Ru,v =

T−1∑

t=1

||F̄ t
u − F̄ t

v || , (1)

where

F̄ t
u = mean({F t

x}), for all pixels x ∈ super-voxel u ;

F̄ t
v = mean({F t

x}), for all pixels x ∈ super-voxel v .

After calculating the relative motion matrix R, we use the
spectral clustering technique to group the super-voxels into
clusters.

2.4 Co-feature Gaussian Mixture Models
We aim to identify the common object candidate from the

super-voxel clusters for a given pair of input video sequences.
We represent a super-voxel as a feature vector f consisting
of the chroma features Cb, Cr, and the texture features



MRS4Cb, MRS4Cr . Each super-voxel cluster is modeled
as a distribution of feature vectors. We use the χ2 distance
to compare the distributions across the two video sequences
and identify the best match as the common object candidate.

To build the Gaussian mixture models (GMMs) in an un-
supervised manner, we select one frame from each video
sequence, and then apply a bounding box to the common
object candidate. The super-voxels covered by the common
object candidate are used to compute the co-feature GMM,
while the super-voxels outside the bounding box are used to
compute background-feature GMMs.

2.5 Markov Random Fields and Graph Cuts
Given a video frame, we define a Markov random field

over the fine-level super-voxels in that frame. The goal of
segmentation is to label a super-voxel as either the common
object or the background. Such an MRF labeling problem
can be solved by graph cuts [2]. As in the standard MRF
formulation, our MRF energy function consists of two terms:
the data term Ed and the smoothness term Es, which are
detailed as follows.

First, we use the Gaussian mixture models to represent
the feature distributions of the common object and the back-
ground. Given the feature vector fi for super-voxel i and a
possible labeling αi, the data term is computed based on the
distance to the co-feature GMM C or the background GMM
B:

Ed(fi, αi ∈ C) = − log πC
k +

1

2
log detΣC

k

+
1

2
[fi − μC

k ]�Σ−1
k [fi − μC

k ]
(2)

and

Ed(fi, αi ∈ B) = − log πB
k +

1

2
log detΣB

k

+
1

2
[fi − μB

k ]�Σ−1
k [fi − μB

k ]
(3)

where k denotes the number of GMM components, and π
(·)
k

denotes the weight for the kth GMM component. μ
(·)
k de-

notes the sample mean of features, and Σ
(·)
k denotes the

covariance matrix.
The smoothness term Es is defined in terms of the feature

distance weighted by the relative motion distance between
neighboring super-voxels:

Es(fi, fj , αi �= αj) = exp(−β||fi − fj ||2)
· exp(−γ||Ri,j ||) ,

(4)

where β and γ are parameters. If the assigned labels of
neighboring super-voxels are the same (i.e. αi = αj), the
smoothness term is set to zero.

3. EXPERIMENTS
The main advantage of our algorithm is that it can model

the intra-video and inter-video cues and use them to obtain
a better segmentation of video objects. Such a mechanism
is not available in conventional video segmentation methods
and image cosegmentation approaches. To illustrate this
point, we compare our algorithm with the video segmenta-
tion method presented in [7] and the image cosegmentation
algorithm of [9].

Comparison with Video Segmentation.
We first compare our algorithm with the video segmen-

tation method proposed by Grundmann et al. [7]. Their

Figure 2: Comparison with video segmentation [7].
Row 1: The two images at the left are two successive
frames of an input video sequence. The two images
at the right are two successive frames of another
video sequence. Row 2: The common-object candi-
dates determined by relative motion. Row 3: The
cosegmentation results obtained by our algorithm.
Row 4: The results obtained by the video segmen-
tation method of [7]. Row 5: The corresponding
optical flows.

method uses a hierarchical graph structure to derive mul-
tilevel segmentation results, and the selection of a specific
level (granularity) for generating the final segmentation has
to be done by the user. Fig. 2 shows an example that high-
lights the difference in segmenting video objects using our
algorithm and the algorithm of [7]. The segmentation re-
sults of [7] are obtained by selecting a level that can best
preserve the object boundaries.

The example in Fig. 2 illustrates that there might exist
ambiguities in optical flow, and thus to perform the relative
motion segmentation on a single video sequence would be
unsatisfactory. This problem can be addressed by our video
cosegmentation algorithm, in which the information from
another video sequence can help to build a better appearance
model for the common object.
Comparison with Image Cosegmentation.

It is possible to apply image cosegmentation to videos by
ignoring the temporal correlations and considering the video
frames as a collection of images. We compare our algorithm
with the image cosegmentation method proposed by Joulin
et al. [9]. The best segmentation results generated by their
algorithm are selected for comparison, as shown in Fig. 3.
The experimental results indicate that the intra-video mo-
tion information is useful to resolve ambiguities in specifying
the region of an object.

Finally, additional results of video cosegmentation gener-
ated by our algorithm are shown in Fig. 4.

4. CONCLUSION
We have presented a new algorithm to solve the problem

of video object cosegmentation. We demonstrate that, by
taking account of the intra-video motion cues and the inter-
video appearance model together, we may devise a more
powerful algorithm for segmenting video objects. We be-
lieve that the new problem of video object cosegmentation
addressed in this paper is of sufficient interest to the multi-
media community and is worth further investigating.
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Figure 3: Comparison with image cosegmentation
[9]. Column 1: The frames from three pairs of video
sequences. Column 2: The results generated by the
algorithm of Joulin et al. Column 3: The video
cosegmentation results obtained by our algorithm.

Figure 4: More results of video cosegmentation gen-
erated by our algorithm.
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