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Abstract

We present a robust algorithm for unsupervised video
object segmentation using foreground prior estimated from
optical flow. Optical flow is an important cue for predict-
ing the region of foreground object in a video. However,
the estimation of flow is inherently inaccurate near the oc-
cluded object boundaries. We show that, even though the
foreground prior might be unreliable due to the inaccu-
rately estimated flow, Cellular Automata can be used to re-
fine the foreground prior and thus is helpful to define the
energy function for better segmentation accuracy. The ex-
periments on the recently proposed DAVIS dataset show that
our method performs favorably against the existing ones.

1. Introduction
Video object segmentation is a fundamental computer

vision task of separating the foreground objects from the
background region in a video. It is important for a wide
range of applications, including video editing, scene under-
standing [17], object class model learning [28], video sum-
marization, and action recognition [14]. The rapidly grow-
ing number of video sequences on the web draws more at-
tention to this labeling task.

Typical video object segmentation tasks have different
levels of user intervention: A user may provide only the
video for unsupervised segmentation [3, 5, 13, 18, 20, 24,
25, 42], or may additionally annotate the object position in
some frames for semi-supervised segmentation [15, 22, 29,
31, 36, 37, 40, 41]. Various segmentation algorithms have
been proposed, for example, tracking based [40, 41], clus-
tering based [3, 15, 24], ranking based [18, 20, 42], or prop-
agation based [29, 36, 37] at pixel level, superpixel level, or
object level. To address the video segmentation task, the
temporal information is one important cue for maintaining
the segmentation consistency over the whole video or esti-
mating the potential foreground objects. The most widely
used technique for this purpose is optical flow estimation,
which models the motion of pixels between two frames.

We aim to address the video object segmentation task

in fully unsupervised manner. We propose a foreground
prior refinement approach and apply it to the unsupervised
video object segmentation task. Under the unsupervised
constraint, the segmentation task usually treats an image re-
gion that has different motion from its surrounding regions
as a potential foreground object. Hence, the quality of op-
tical flow is usually proportional to the accuracy of fore-
ground object estimation. However, optical flow is often
deteriorated by large displacements or occlusions [4] and
thus might result in unsatisfying foreground prior. Here we
employ Cellular Automata to design a foreground prior re-
fining method that makes the prior estimation more robust
to the inaccurate optical flow around object boundaries. Af-
ter being refined with Cellular Automata, the foreground
prior is enforced to be consistent within the homogeneous
region and fit to the object boundaries. Based on the re-
fined prior, we are able to ensure the quality of the corre-
sponding energy function for figure-ground segmentation.
We then build a spatio-temporal graphical model of the en-
tire video, and extract all refined foreground object priors
from video frames to learn the appearance Gaussian mixture
model (GMM). The learned GMM is thus used to gradually
refine the segmentations.

2. Related Work
The literature related to video object segmentation can

be divided into three categories with respect to the level
of required supervision: unsupervised methods, semi-
supervised methods, and supervised methods.

2.1. Unsupervised Methods

Unsupervised video segmentation methods [3, 5, 13, 18,
20, 24, 25, 42] have no requirement of any user annotation
and usually assume that different objects have different ap-
pearances or motions. Based on the clustering concept, the
methods of [3, 24] track keypoints to form trajectories in
video sequence and thus cluster these trajectories to sepa-
rate the keypoints of the object from the background region.
Brutzer et al. [5] assume that the appearance of background
changes slowly over time and thus consider the rapidly
changing pixels to be the foreground. With the guidance of



object proposals [6, 8], the methods of [13, 18, 20, 42] rank
several candidate combinations from object-like image re-
gions to reason out the potential object segmentations. Pa-
pazoglou and Ferrari [25] assume that the foreground object
has different motion with respect to its surrounding regions,
and hence separate the object via the graph cuts technique.
The unsupervised methods are suited for large scale date-
sets; however, the segmentation quality may degrade if the
underlying assumption does not hold.

2.2. Semi-supervised Methods

Semi-supervised video segmentation methods [15, 22,
29, 31, 36, 37, 40, 41] require the user annotation in one or
few frames and then propagate the annotation to the entire
video sequence. Grundmann et al. [15] represent a video
sequence as a set of supervoxels, and then the supervoxels
belonging to the foreground object indicating by the user
annotations are grouped to represent the object. Marki et
al. [22] minimize the energy in bilateral space to approxi-
mates non-local connections for separating the object from
the background. Given the manually annotations on a few
frames, several methods [29,36,37] can propagate the anno-
tations to all other frames mainly based on the optical flow.
Ramakanth and Babu [31] cast the segmentation task as an
optimization problem, which defines the energy of a graph
over the entire video. Given some annotated superpixels,
Wen et al. [40] and Yang et al. [41] carry out the segmenta-
tion via tracking the object segments. The semi-supervised
methods usually focus on improving the quality of annota-
tion propagation, but how to make the annotation easier to
get is a potential issue.

2.3. Supervised Methods

Supervised video segmentation methods [10, 19, 38] re-
quire user annotations while segmenting. Since the user fre-
quently corrects the segmentation results, a high segmen-
tation quality is guaranteed. The supervised methods are
suited for specific scenarios, for instance, the professional
rotoscoping in the film industry.

In sum, the unsupervised methods enable the processing
of large amounts of video sequences without human inter-
vention, but the semi-supervised video segmentation meth-
ods have relatively better segmentation accuracy. Although
the supervised methods achieve the best segmentation qual-
ity, the cost of time-consuming interaction is unavoidable.

3. Approach
The goal of our unsupervised video segmentation ap-

proach is to segment objects that move differently with re-
spect to the surroundings. Our approach includes two main
phases, namely foreground prior estimation and figure-
ground segmentation. In the first phase, we first estimate the
motion boundaries from the optical flow cue and infer the

foreground prior region of each frame. Then, Cellular Au-
tomata is used to refine all foreground prior regions. In the
second phase, we aim to collect all refined foreground prior
regions to construct the global appearance Gaussian mixture
model for separating the object region from the background
region via graph cuts. Note that, while defining the appear-
ance data term and the prior data term of energy function,
the foreground prior regions and the propagated foreground
prior are also refined via Cellular Automata.

3.1. Foreground Prior Estimation

This phase estimates a foreground prior region based on
the motion cue. The optical flow of each pair of consecutive
frames are calculated first, and then the corresponding per-
frame motion boundaries are defined and refined to reason
out the foreground prior region.

3.1.1 Motion Boundaries

We first compute the optical flow f t [2, 3, 33] of each pair
of consecutive frames t and t + 1. The motion boundary
btp [25, 34] of frame t, which indicates that the image pixel
p has different motion with respect to its neighboring pixels,
is defined as

btp =

{
1, if b̂tp · b̃tp > 0.5 ,
0, otherwise ,

(1)

where b̂tp = 1− exp(−θ1‖∇f tp‖) means the moving differ-
ence of the motion boundary at pixel p in frame t, ‖∇f tp‖
denotes the magnitude of the flow vector f tp at pixel p in
frame t, b̃tp = 1 − exp(−θ2 maxq∈N (∠f tpq)) means the
orientation difference of the motion boundary at pixel p
in frame t, N denotes the 8-connected neighborhood of p,
∠f tpq denotes the angle between f tp and f tq . We empirically
set and fix the parameters θ1 = 0.7 and θ2 = 1 to control
the steepness of their corresponding functions in all exper-
iments. The Eq. (1) is used to indicate the pixel that has
different motion speed and motion direction from its sur-
roundings. Fig. 1(c) shows one example of motion bound-
aries bt.

3.1.2 Foreground Prior

In computational geometry [11], the point-in-polygon prob-
lem deals with the question of determining whether a pixel
is inside a polygon. Papazoglou and Ferrari propose the
integral intersections algorithm [25] to identify whether a
pixel is inside the incomplete boundaries. Given the mo-
tion boundary bt, we employ the integral intersections al-
gorithm to obtain a binary map mt. We then represent each
frame t as a set of superpixels St = {st1, st2, ..., st|St|} us-
ing the SLIC algorithm [1] with roughly 2,000 superpixels.
For each superpixel si, we average the pixels {mt

p|p ∈ si}



(a) frame t (b) optical flow f t (c) motion boundaries bt

(d) binary map mt (e) foreground prior Mt (f) refined foreground prior Mt

Figure 1. An example of foreground prior estimation. (a) One frame of the sequence bmx-bumps. (b) Optical flow computed using [3]
from frame t to t+1. (c) The estimated motion boundaries using (b). (d) The calculated binary map mt using (c). (e) The superpixel-level
foreground prior M t corresponding to (d). (f) The refined foreground prior using (e). The foreground prior inside the object is clearer, in
comparison with the initial foreground prior M t.

to represent its foreground prior belief, and thus form the
superpixel-level foreground prior M t. Fig. 1(d)-(e) show
examples of binary map mt and foreground prior M t.

3.1.3 Foreground Prior Refinement

As can be observed in the Fig. 1(b), the quality of optical
flow is often degraded by large displacements or occlusions,
particularly around object boundaries. Here, we propose the
following model to make the foreground prior more fit to the
object boundaries.

Cellular Automata [23] is a self-organizing evolution
model. The model can be used to propagate information
[21,30] via exploiting the intrinsic relevance among similar
neighbors. The Cellular Automata model has a set of cells
with discrete states evolving with time. We use superpixels
as cells, and the superpixel-level foreground prior defines
the initial state of each cell.

To simulate the evolving state of each cell, we employ
the updating rule as [21, 30] for updating the states of all
cells simultaneously. The rule is defined as

Sr+1 = C · Sr + (I−C) ·A · Sr , (2)

where Sr and Sr+1 respectively denote the current state and
the next state of size |St|-by-1, and I denotes the |St|-by-
|St| identity matrix.

The impact factor matrix A = [aij ]|St|×|St| defines the
influence power of each cell si to its neighboring cell sj . In
general, the influence power aij of the cell si to the cell sj

is defined proportional to the feature similarity between si
and sj . We define aij as

aij =

{
e−‖fi−fj‖

2
2/σ

2

, if j ∈ Ω(i) ,
0, i = j or otherwise ,

(3)

where fi and fj denote the mean CIE LAB color of su-
perpixel, and Ω(i) denotes the adjacent superpixels of si.
We set σ2 = 0.1. Note that, the matrix A should be row-
normalized to ensure that the row sum is one.

The coherence matrix C = diag{c1, c2, · · · , c|St|} de-
fines the strength of coherence of each cell towards its cur-
rent state. In general, the strength of coherence ci of the cell
si is defined to be inversely proportional to the similarity of
the most similar neighboring cell. To ensure ci ∈ [α, α+β],
we define ci as

ci = α+
1/max(aij)−min(cj)

max(cj)−min(cj)
· β . (4)

We set α = 0.2 and β = 0.6 as in [21, 30].
To refine the foreground prior of frame t via Cellular Au-

tomata, we set the initial state Sr in round r = 0 as the fore-
ground prior M t. The final state after R rounds is denoted
as SR. Fig. 1(f) shows an example of refined foreground
prior Mt.

3.2. Figure-ground Segmentation

This phase defines an energy function based on the fore-
ground prior. We first represent a video sequence as a
superpixel-level spatio-temporal graph, and then the energy



function for the graph is defined with respect to the fore-
ground prior over frames. Finally, figure-ground segmenta-
tion is achieved using graph cuts.

3.2.1 Spatio-temporal Graph

Given a video with T frames, we define its spatio-temporal
graph as a weighted connected graph G = (S, E , ω) with the
vertex set S = S1 ∪S2 ∪ · · · ∪ST and the edge set E . Each
edge eij ∈ E denotes the adjacency relationship between
superpixels si and sj . Note that, two superpixels sti ∈ St
and st+1

j ∈ St+1 are adjacent if sti can cover st+1
j after

being warped by the optical flow. The weighting function
ω : E → [0, 1] is defined as

ωij = e−‖fi−fj‖
2
2/σ

2

, (5)

where fi and fj denote the mean CIE LAB color of super-
pixel.

3.2.2 Energy Function

Segmenting a video {sti}t,i is equal to a labelingL = {lti}t,i
among all superpixels. This work uses the binary label
lti ∈ {0, 1}. For evaluating a labeling, we define the energy
function as

E(L) = EA + α1E
P + α2E

S + α3E
T . (6)

The appearance data term EA evaluates how likely a su-
perpixel belongs to the foreground or background. The
prior data term EP encourages foreground labeling in ar-
eas where independent motion has been observed. The spa-
tial smoothness term ES and the temporal smoothness term
ET encourage spatial and temporal smoothness, respec-
tively. The parameters α1, α2, α3 are the weights for differ-
ent terms. We set α1 = 1.5, α2 = 2,000, and α3 = 1,000.

Appearance Term: The appearance data term consists
of two Gaussian mixture models in RGB color space. We
consider all other superpixels to define the potential of su-
perpixel sti in frame t with respect to the foreground GMM
as

EA =
∑
i,t

exp(−β1 · (t− t′)2) ·Mt′

i , (7)

where exp(·) computes the influence of st
′

i over time, t′

denotes the other frame, and Mt′

i denotes the refined fore-
ground prior of the superpixel si in frame t′. The potential
of sti with respect to the background GMM is defined anal-
ogously, i.e., the Mt′

i in Eq. (7) is replaced with 1 −Mt′

i .
We set β1 = 0.0001.

Prior Term: We define the prior data term to accumulate
the refined superpixel-level foreground prior over the video.
The propagation equation is defined as

Pt+1
j = Pt+1

j + β2

∑
i ω(sti, s

t+1
j ) · ψ(sti)∑

i ω(sti, s
t+1
j )

Pti , (8)

where the value of Pti is initialed with Mt
i, ω(sti, s

t+1
j )

means the weight ωij defined in Eq. (5), ψ down-weights
the propagation power of sti if it covers the strong flow
gradients. In [25], the function φ, which computes the
overlap ratio between the two superpixels among two con-
secutive frames, is used to define their propagation equa-
tion. However, replacing the function φ with the function
ω shows better segmentation quality in our experiment. We
set β2 = 20. The forward propagation and backward prop-
agation of Eq. (8) respectively define the prior potential P̂ti
and P̃ti. The prior data term can thus be defined as

EP =
∑
i,t

P̂ti + P̃ti + Mt
i

3
. (9)

Smoothness Term: The spatial smoothness term ES is
defined on the edge of the adjacent superpixels in the same
frame, and the temporal smoothness term ET is defined on
the edge of the adjacent superpixels among two neighboring
frames. We follow the contrast-modulated Potts potential
[18, 25, 32] to define ES and ET as

ES =
∑

(i,j)∈E,t,lti 6=ltj

d1(sti, s
t
j)
−1 exp(−β3d2(sti, s

t
j)) ,

(10)
ET =

∑
(i,j)∈E,t,lti 6=l

t+1
j

φ(sti, s
t+1
j ) exp(−β4d2(sti, s

t+1
j )) ,

(11)
where d1 is the Euclidean distance between the centers of
two superpixels, d2 is the squared Euclidean distance be-
tween the mean RGB color of two superpixels, and φ [25]
is the overlap ratio guided by optical flow between the two
superpixels. The parameters β3 and β4 are set as [25].

Notice that, P̂ti, P̃
t
i, and Mt

i are refined via Cellular Au-
tomata while defining the energy function. Therefore, the
figure-ground segmentation is obtained by minimizing the
energy function as GrabCut [32]. Our GMM model uses
ten mixture components in RGB color space for each label,
and we additionally use the guided filter [16] to reduce the
under-segmentation error derived from over-segmentation.

4. Experimental Results
We compare our approach with several popular unsu-

pervised video segmentation methods: MSG [3], NLC [9],
TRC [12], KEY [18], FST [25], CVOS [35], and SAL [39].
The evaluations are performed with respect to the two met-
rics suggested in the DAVIS dataset [26]: region similarity
(J ) and contour accuracy (F). In our experiments, all pa-
rameters are fixed without further tuning.

The comparison is evaluated on the DAVIS (Densely An-
notated VIdeo Segmentation) dataset [26], which contains
50 high-resolution sequences of 3,455 frames. This dataset
covers a wide range of object segmentation challenges.



Table 1. Quantitative comparison (%) of region similarity (J ) and contour accuracy (F) on the DAVIS dataset [26]. The ‘mean’ is
the average dataset error. The ‘recall’ measures the fraction of sequences scoring higher than a threshold. The ‘decay’ quantifies the
performance loss (or gain) over time. For rows with an upward pointing arrow, the higher numbers are better, and vice versa for rows
with a downward pointing arrow. The best two scores among the unsupervised methods are colored in red and green. The scores of the
semi-supervised methods that are better than ours are emphasized in boldface.

Unsupervised Semi-Unsupervised
MSG NLC TRC KEY FST CVOS SAL Ours TSP SEA HVS JMP FCP BVS

mean J ↑ 54.3 64.1 50.1 56.9 57.5 51.4 42.6 66.4 35.8 55.6 59.6 60.7 63.1 66.5
mean F ↑ 52.5 59.3 47.8 50.3 53.6 49.0 38.3 61.1 34.6 53.3 57.6 58.6 54.6 65.6
recall J ↑ 63.6 73.1 56.0 67.1 65.2 58.1 38.6 81.2 38.8 60.6 69.8 69.3 77.8 76.4
recall F ↑ 61.3 65.8 51.9 53.4 57.9 57.8 26.4 73.2 32.9 55.9 71.2 65.6 60.4 77.4
decay J ↓ 2.8 8.6 5.0 7.5 4.4 12.7 8.4 4.9 38.5 35.5 19.7 37.2 3.1 26.0
decay F ↓ 5.7 8.6 6.6 7.9 6.5 13.8 7.2 5.2 38.8 33.9 20.2 37.3 3.9 23.6

Figure 2. Qualitative video segmentation results from some sequences of DAVIS dataset [26]. The red contours depict the ground truth
boundaries. The green contours depict the boundaries of our segmentations.

Table. 1 summarizes the average performance of each
method over the entire dataset. As can be seen in Table. 1,
our method outperforms all other unsupervised video seg-
mentation methods excepts on the decay J evaluation. Our
method achieves the best performance on the mean J , re-
call J , mean F , recall F , and decay F , which demon-
strates the superior performance of our method. We addi-
tionally provide the results of some semi-supervised meth-
ods for reference: TSP [7], SEA [31], HVS [15], JMP [10],
FCP [27], and BVS [22]. The results also show the favor-
able quality of our method even if it is compared with semi-
supervised methods.

Fig. 2 shows some qualitative results of the proposed
video segmentation method. The challenging video se-
quences shown in Fig. 2 demonstrate that our method is ro-
bust to some intriguing scenarios such as complex objects
and fast-motion. Regarding the computational cost, our ap-

proach takes about 3 seconds per frame for DAVIS dataset
(480p) on an Intel Core i7-4770 3.40 GHz CPU, excluding
the optical flow computation.

5. Conclusion

We have shown that using Cellular Automata to refine
the foreground prior has a significant advantage to make the
estimation of foreground prior more robust to the inaccurate
optical flow. With the aid of the refined foreground prior, the
energy function can be formulated to yield higher quality
results. Thus, the proposed unsupervised video segmenta-
tion method is able to extract more suitable superpixels for
learning the GMM appearance model to improve the seg-
mentation accuracy. The experimental results demonstrate
that our unsupervised video segmentation method, which
benefits from the refined foreground prior, performs favor-
ably against the existing methods.
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