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ABSTRACT

This paper presents a toolchain that can transfer transparent,
multi-layer textures onto some unknown surface in an image.
We propose alpha quilting, which is able to generate a large
texture map and its corresponding alpha matte from a small
template of natural texture. The synthesized texture map can
then be transferred to a surface according to the estimated
surface normal. The procedure of texture transfer is called
texture matting, which layers multiple textures onto a surface
with respect to the transparency and multi-layer characteris-
tics of natural textures. The experimental results show that
our method is able to produce visually plausible results of
pasting opaque and transparent textures on surfaces.

Index Terms— texture transfer, texture matting

1. INTRODUCTION

Previous approaches to image-based texture synthesis often
treat a texture as a single-layer image consisting of a regu-
lar pattern or some less regular but repeated image features
[2, 5,9, 12]. Algorithms for image-based texture synthesis
generally synthesize the textures regardless of their intrinsic
properties, except that certain parameters in the algorithms
might depend on the scale of texture. However, many natu-
ral textures, such as flames or clouds, are not just purely flat
and opaque. They may comprise layers of substances and ele-
ments, and often have a transparent appearance. In this work,
we try to take into consideration the layered nature and the
transparent property of textures, and by doing so we are able
to deal with more complex textures that cannot be well han-
dled by previous texture synthesis algorithms. We develop
a tool for transferring multi-layer natural textures onto an un-
known surface shown in an image. The process of transferring
textures can be divided into three parts: First, we extract the
alpha matte from a small template of natural texture, and syn-
thesize a large foreground-texture map using the small tem-
plates of texture and its corresponding alpha matte. Second,
we recover the surface normals from the input image. Third,
we transfer the large texture map onto the surface according
to the recovered surface normals.

To produce visually plausible results of texture transfer,
we use texture matting to take into account the transparency
of the synthesized texture map. By texture matting we mean
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Fig. 1. (a) Texture transfer using opaque texture Glacier. (b)
Alpha quilting using transparent texture Ice. Note that a ran-
dom background is overlaid with the alpha quilting result for
visualization. (c) An example of two-layer texture matting.

that the sample textures used for synthesis are not necessar-
ily opaque but may be associated with some alpha mattes that
define the opacity (or the transparency) of the textures. The
proposed technique is able to synthesize a new foreground-
texture map and its corresponding alpha matte. The texture
can then be transferred and layered onto the target surface to
produce plausible blending results based on the alpha matte.
Fig. 1 illustrates an example of two-layer texture matting us-
ing the opaque texture Glacier and transparent texture Ice.
Our texture matting method is able to produce a visually ap-
pealing synthetic image with shading and transparent effects.

1.1. A Concise Review of Related Work

Efros and Leung [5] introduce Markov random fields (MRFs)
and non-parametric sampling to the modeling of textures.
Wei and Levoy [12] also use an MRF model but present a
more efficient multi-scale algorithm to predict the states of
pixels. They use nearest-neighbor search to find the best
match for predicting the pixel states instead of estimating the
states by non-parametric sampling. Ashikhmin [2] presents
an algorithm that is capable of synthesizing structural tex-
tures by constraining the candidates in nearest-neighbor
search. Hertzmann et al. [8] combine the previous two
algorithms [2, 12], and introduce the idea of image analo-
gies for various applications of texture synthesis and image



processing. Another way to preserve the texture structure
and reduce the computational cost is to synthesize a large
texture ‘patchwise’ rather than ‘pixelwise’. The image quilt-
ing algorithm [4] follows a patch-based synthesis scheme
and attempts to find a minimum-cost boundary to stitch two
neighboring patches. Kwatra et al. [9] also use a patch-based
procedure and perform graph cuts to find optimal seams for
merging patches. Guo et al. [6] present a method for two-
layer texture synthesis. They model the similar elements
(textons) in a texture image, and learn a generative model for
synthesizing new textures. They only consider either “zero”
or “full” transparency in the template texture, for indicating
that a pixel in the texture belongs to foreground or back-
ground. Regarding transferring textures onto a surface, e.g.
[11], we adopt the approach proposed in [7] for estimating
surface normals. Surface normals are clustered into segments,
and the textures can be mapped onto the surface according to
the normal vector at the center of a segment.

2. TEXTURE TRANSFER WITH ALPHA MATTES

The main problem to be addressed in the texture transfer ap-
plication is how to paste a template of natural texture onto
an unknown surface. Consider we have two images that are
given as the input: The first image is a (not-fully-opaque)
sample texture that we try to use for texture synthesis. The
second image consists of an unknown surface and we are in-
terested in transferring the sample texture onto it. We assume
that the user provides the information for deriving the alpha
matte from the sample texture, in a form such as scribbles [10]
or trimaps (foreground, background, and unknown areas [3]).
The silhouette of the target surface is also assumed to be spec-
ified by the user. Given the two input images and the user-
provided information, we want to solve the problem of layer-
ing the natural texture onto the surface, subject to the trans-
parency of the texture and the curvature of the surface. Our
aim is to create visually plausible results of texture transfer,
where the output images exhibit realistic transparency of the
textures, and the multi-layer characteristics are vividly simu-
lated on the target surface.

2.1. Alpha Quilting: Synthesizing Textures and Alpha
Mattes

Efros and Freeman [4] propose image quilting for patch-based
texture synthesis. To improve the effectiveness of texture syn-
thesis and texture transfer for multi-layer textures, we pro-
pose a new algorithm called alpha quilting, which is able to
produce a large foreground-texture map and its corresponding
alpha matte. The main idea of our approach is to synthesize
textures with side information derived from the alpha values.
The input to the alpha quilting algorithm comprises a sam-
ple foreground-texture and its alpha matte. The foreground-
texture and the alpha matte are obtained by applying the alpha
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Fig. 2. The alpha quilting algorithm proceeds with a
patch-based synthesis scheme. We go thorough the to-be-
synthesized texture map in raster-scan order, and synthesize
the texture map ‘patch by patch’ with some overlaps. Given
a patch P from the sample foreground-texture and its alpha
mattes aF, we compute the error function g(P, aF) with re-
spect to the overlapping region at the current location. The
overlapping region is an L-shape area, and the patch over-
laps at the left and the above with the previously synthesized
foreground-texture F. We select a set of candidate patches
whose error g satisfies g < (1 + €) gmin for some € > 0,
where gpin 1s the minimum value over all patches.

estimation technique of [10]. Our alpha quilting algorithm
goes thorough the texture map to be synthesized in raster-scan
order, and synthesizes the texture map ‘patch by patch’ with
overlaps. For every location, we have to search the sample
foreground-texture for a set of candidate patches that satisfy
the overlap constraints based on some error tolerance. To ac-
count for the transparency property, the alpha quilting algo-
rithm uses both the color and the alpha values in the criteria
of selecting candidate patches.

2.1.1. Selecting Candidate Patches

The procedure of selecting candidate patches is illustrated in
Fig. 2. Given a patch P in the sample foreground-texture and
its corresponding alpha matte aF, we define the error func-
tion g as a combination of two terms:
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where F; is a pixel of the previously synthesized foreground-
texture inside the overlapping region €2, and Py is a pixel
in P. The alpha values of F; and Py are o; and o). The
function p computes the Bhattacharyya coefficient between
two distributions  and h(aF), which we will discuss later.
The patch’s upper and left parts are overlapped with the pre-
viously synthesized foreground-texture to form an L-shape
overlapping region 2. The index pairs {i,i'} € € denote
an index ¢ to the overlapping pixel in the previously synthe-
sized foreground-texture and an associated index 7’ to the cor-
responding pixel in the patch.



The first term in Eq. (1) measures the dissimilarity in ap-
pearance between the patch and the synthesized foreground-
texture, by taking into account the alpha values. This term
tends to favor patches of small alpha values, and therefore we
have to add a regularization term to prevent from choosing
patches that contain only a small portion of the foreground.
The prior for an alpha matte can be modeled by beta distri-
butions, as shown in [1]. In this work, we directly estimate
the distribution /& of alpha values in the sample texture, and
expect that the synthesized foreground-texture would exhibit
a similar distribution of alpha values (denoted by h(aF)).
The dissimilarity between the two distributions is measured
by 1 — p(h, h(aF)), where p is the Bhattacharyya coefficient

p(h, h(a®)) :/\/ﬁh(ap)da. 2)

The value of p is within [0, 1], and it is equal to 1 if the two
distributions are identical. In practice, we use a histogram of
100 bins to approximate the distribution of alpha values for
the computation of the Bhattacharyya coefficient.

Some patches might have very distinctive appearance, and
so the differences between these patches and others would be
quite significant. If such patches happen to be chosen, it is
very likely that only a small number of suitable candidates
will be included in the next iteration. Therefore, instead of
picking the best patch for every location, we search the sam-
ple foreground-texture for a set of candidate patches whose
values of ¢ in Eq. (1) are within error tolerance (1 + €) gmin
for some € > 0, where g,i, is the minimum value over all
patches. We use ¢ to expand the range of candidates, and in
our implementation we set € = 0.02.

2.1.2. Minimum Error Boundary

For each patch belonging to the candidate set, we use dy-
namic programming to find the minimum-error seam inside
the overlapping region. We discuss below the case of com-
puting vertical seam, and the case of finding horizontal seam
can be solved similarly. For finding the vertical seam, we con-
sider only the difference in the appearance of the foreground.
Here we change the notation for the subscripts. We use two-
dimensional indexes for the sake of explanation. The error
surface at a location (I, m) with respect to a candidate patch
P and its alpha matte « is defined by

el,m(Pa aP) = ||05l,mFl,m - aﬁ7m/B/,m’ ||2 5 (3)

where Fj ., is the previously synthesized foreground-texture
at location (I,m), and the indexes (I',m’) denote the corre-
sponding location in P. To find the vertical minimum-error
seam through this error surface, we traverse e, from top to
bottom, and compute the minimum cumulative error map E
for all seams using dynamic programming

Eim=c¢€m+min{E_1m_1,Em-1, Eix1,m-1}. @&

The minimum cumulative value of the last row of E repre-
sents the total error of the seam, and the corresponding path
that starts from the first row of e to an endpoint at the bot-
tom row indicates the minimum-error vertical seam. A simi-
lar procedure is applied to horizontal overlaps.

2.1.3. Choosing the Patch by Factored Sampling

For each patch in the candidate set, we compute a probability
based on its minimum cumulative error:

p(P,a’) o« exp{—n E(P,a")}. Q)

We sample a patch from the above probability distribution of
candidate patches, and stitch the selected patch into the syn-
thesized foreground-texture based on the vertical and horizon-
tal minimum-error seams. We also merge the alpha matte of
the selected patch into the existing alpha matte according to
the seams.
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Fig. 3. (a) The input image with the background being cut
out. (b) Estimating the normal vector of each pixel on the
object surface. (The z, y, and z components of a normal
vector are respectively converted to R, G, and B colors for
displaying.) (c) Grouping adjacent pixels of similar normal-
vectors using k-means. (e) Transferring a new texture onto
the reconstructed surface according to the approximate sur-
face normals.

3. SURFACE NORMAL RECONSTRUCTION FOR
TEXTURE MATTING

The results of alpha quilting will be layered on a surface,
which is reconstructed from a static image using normal-
vector recovery. Many approaches to surface normal recovery
have been proposed in the literature of graphics and machine
vision. Our attempt is to reconstruct the surface of a speci-
fied object from a static image, and to apply texture transfer
and matting to the surface. We do not need to recover the
exact 3D information about the surface. We only need the
approximate surface normals that are good enough to account
for surface-based texture transfer. The simple surface-normal
recovering technique presented in [7] is employed for our ap-
plication. After estimating the normal vector of each pixel on
the surface, we may group adjacent pixels of similar normal



(b) ()

Fig. 4. (a) The original image. (b) Texture transfer using opaque texture Bricks. (c) Alpha Quilting of Erosion. (A random
background is added for visualization.) (d) Erosion + Bricks. (e) Alpha Quilting of Clouds. (f) Clouds + Erosion + Bricks.

vectors to form clusters of surface normals. In our implemen-
tation, we use the k-means algorithm to do clustering. We
create for each pixel a 5D data point that comprises the three
components of the normal vector and the x and y coordinates
of the pixel, and then apply k-means to cluster the 5D data
points. The final step is to layer the texture patches on the
surface based on the clusters of surface normals. To make
the appearance look more natural, each texture patch must be
deformed to match the orientation at its target location on the
surface, using the technique described in [7]. The procedure
is shown in Fig. 3.

After the above procedure, the texture image would seem
to be pasted along the surface of the object, but the luminance
information is lost in the result. We compute the inner product
between the normal vector of each point and the estimated
light source vector S to recover the luminance. We multiply
the recovered luminance to the tiled textures to get the output
of texture transfer.

We can further combine the results of texture transfer to
produce multi-layer effects. Suppose that texture T contains
a transparent foreground and texture T is a previously syn-
thesized texture-transfer result. We may then take T'; as fore-
ground and T'5 as background, and use the alpha values of T
to combine T; and Ts.

3.1. Implementation Details

The light source is estimated by least squares, but if we know
the correct direction of the light source beforehand, we can di-
rectly apply its direction and skip the step of light source esti-
mation. Furthermore, the estimation error on the light source
and on the normal vectors might sometimes lead to unnatural
approximations. To prevent negative values of the Z com-
ponent of the normal vectors, we require that the value of Z
component should not be lower than a threshold (= 0.1). We
rectify the Z component values according to the threshold,
and then re-normalize the vectors to ensure that every surface
normal remains a unit vector.

4. EXPERIMENTAL RESULTS

This section shows the experimental results of alpha quilting
and texture matting. We present the results of pasting multi-
layer textures onto the estimated surface of a stone sculpture.
In our experiments we use two samples of opaque textures
(Bricks and Glacier) and three samples of transparent tex-
tures (Erosion, Cloud, and Ice). The synthesis results of
transparent textures and opaque textures are combined to pro-
duce the multi-layer texture effects.

Fig. 4 depicts the results of three-layer texture matting us-
ing varied texture samples. At the bottom layer we use an
opaque texture Bricks, and at the upper two layers we use
two different transparent textures, Erosion and Cloud. Based
on the alpha mattes of textures produced by alpha quilting, we
are able to create various combinations of matting effects, and
the synthesis images exhibit the transparency and multi-layer
characteristics of the textures. Fig. 1 illustrates another ex-
ample of two-layer texture matting using the opaque texture
Glacier and transparent texture Ice.

5. CONCLUSIONS

The goal of this paper is to improve the effectiveness of
texture synthesis in reproducing multi-layer characteristics
of opaque and transparent textures on a surface. The alpha
matte of texture provides a useful cue for merging and mod-
ulating the appearance of overlapping region within the two
neighboring patches. We have shown that the proposed alpha
quilting and texture matting techniques perform well in cre-
ating interesting visual effects. A possible extension of this
work is to enable the textures to “grow” outside the surface
boundary in the image.
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