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Abstract

We present a new segmentation method that leverages latent
photographic information available at the moment of taking
pictures. Photography on a portable device is often done by
tapping to focus before shooting the picture. This tap-and-
shoot interaction for photography not only specifies the re-
gion of interest but also yields useful focus/defocus cues for
image segmentation. However, most of the previous interac-
tive segmentation methods address the problem of image seg-
mentation in a post-processing scenario without considering
the action of taking pictures. We propose a learning-based ap-
proach to this new tap-and-shoot scenario of interactive seg-
mentation. The experimental results on various datasets show
that, by training a deep convolutional network to integrate
the selection and focus/defocus cues, our method can achieve
higher segmentation accuracy in comparison with existing in-
teractive segmentation methods.

Introduction
Interactive image segmentation incorporates a human-in-
the-loop mechanism to collect hints from the user as a guide
toward the expected segmentation result. Existing interac-
tive segmentation algorithms adopt different types of user
inputs such as bounding boxes, scribbles, control points, or
simple clicks, which aim to specify the target object or the
region of interest. Most of the existing algorithms operate as
an interactive tool in a post-processing scenario, that is, the
to-be-segmented image is assumed fixed and the user’s in-
puts are not necessarily relevant to how the image is taken.
We propose to consider the action of taking pictures as part
of the interactive segmentation process. In such a scenario,
the user may tap the touchscreen of the smartphone/camera
to focus on the target object. The tap-and-shoot interaction
provides useful latent information about the scene, and our
approach can learn to extract the selection and defocus cues
for segmenting the target object.

A camera with a lens is often preferable to a pinhole cam-
era in that the exposure time can be greatly reduced when
taking a picture. However, a lens can focus at only one dis-
tance in a scene, and the other spots that are nearer or farther
from that distance will be out of focus and look blurry in
the captured image. This kind of blur is called the defocus
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Figure 1: An example of segmentation with the selection
and defocus cues. Notice that, the defocus map in (c) is just
for visualization. Our method in fact implicitly learns the de-
focus cue via a convolutional network. (a) A tap-and-shoot
image focusing on the gorilla. (b) The selection cue of (a), in
which the brighter intensity values represent the higher pref-
erences to the target object according to the user’s tapping
position. (c) The defocus cue of (a), in which the brighter
intensity values represent the lower degrees of estimated de-
focus blur. (d) The predicted probability map of the target
object. The final segmentation result can be easily derived
from the probability map via thresholding.

blur. The degree of defocus blur is correlated with the dis-
tance from the capture point to the camera, the position of
the focal plane, the lens focal length, and the lens aperture
size. The process of focusing the lens is to make the target
object locate on the focal plane so that it can look sharper.
In this work we build a convolutional network that learns to
extracts the inherent defocus cue in the image captured via
tap-and-shoot interaction.

Recently, semantic segmentation becomes a popular re-
search topic owing to the greatly improved segmentation
accuracy via deep network learning. A semantic segmenta-
tion task aims to label the regions of some predefined ob-
ject classes. On the other hand, in a general figure-ground
segmentation problem the region of interest of a given im-
age is ambiguous to define since different users may prefer
different regions of interest. We address the figure-ground



segmentation problem using an easy-to-train convolutional
network architecture. The selection and defocus cues are ex-
tracted from the tap-and-shoot image. The selection cue is
estimated based on the user’s tapping position and is repre-
sented as an augmented image channel to guide the deep
convolutional network toward localizing the region of in-
terest without training with all possible object classes. The
network is also designed to learn to extract the defocus cue
from the tap-and-shoot images. The augmented channel and
the extracted defocus cue are integrated to predict the re-
gion of interest. Fig. 1a shows a tap-and-shoot image for
segmentation. Figs. 1b-1d illustrate the augmented channel
of the selection cue, the defocus map for visualization, and
the prediction result produced by the proposed convolutional
network.

The main ideas of this work are summarized as follows.

• We address a new scenario of image segmentation involv-
ing tap-and-shoot interaction. The task is challenging be-
cause only one input/click from the user is available to
specify the target.

• We propose an end-to-end trained convolutional network
that is effective in extracting the full-scale features for
predicting the region of interest.

• We propose to use the selection and defocus cues to guide
the prediction of the convolutional network for the tap-
and-shoot segmentation task. Our method improves the
segmentation accuracy on several datasets in comparison
with previous interactive segmentation methods.

Related Work
We briefly review previous work on defocus estimation and
image segmentation in semantic and interactive manners.

Defocus Blur Estimation. Methods for defocus blur esti-
mation on monocular images can be categorized into gradi-
ent based methods and frequency based methods. Gradient
based methods (Elder and Zucker 1998; Zhuo and Sim 2011;
Peng, Zhao, and Cosman 2015; Chen, Chen, and Chang
2016) draw upon the observation that the gradient mag-
nitudes at edge locations often decay rapidly after blur-
ring. Frequency based methods (Zhang and Hirakawa 2013;
Zhu et al. 2013; Shi, Xu, and Jia 2015) are based on the fact
that blurring would suppress high-frequency components
and enhance low-frequency components. We find that the
existing defocus estimation methods are not robust enough
to extract the defocus cue for guiding the segmentation task.
Instead, we train our convolutional network to extract the in-
herent defocus cue in the image by itself for predicting the
target region.

Deep Network Architectures for Semantic Segmenta-
tion. Although our work is aimed at solving figure-ground
segmentation with latent cues, we study the state-of-the-
art deep network architectures for semantic segmentation,
and adopt useful ideas to design our network for tap-and-
shoot segmentation. Long et al. proposes an efficient end-
to-end network architecture called Fully Convolutional Net-

works (FCN), which replaces all fully-connected layers with
convolutions (Long, Shelhamer, and Darrell 2015). FCN is
widely used in many applications that involve dense struc-
tured predictions. U-net extends FCN by adding more short-
cut connections and a larger feature channels in the up-
sampling phase (Ronneberger, Fischer, and Brox 2015). The
architecture becomes more symmetric and yields better seg-
mentation results than FCN. Yu and Koltun further replace
the pooling layer with the dilated convolution, which in-
creases the receptive filed without decreasing the image res-
olution. The network uses the same numbers of parameters
but gets more precise segmentation (Yu and Koltun 2016).
DeepLab adopts the idea of dilated convolution and pro-
poses a new pooling strategy called atrous spatial pyra-
mid pooling (ASPP) (Chen et al. 2016; 2017). Recently,
DenseNet shows a more efficient architecture by densely
connecting different layers (Huang et al. 2017). Its perfor-
mance is better than other previous architectures on classi-
fication tasks of CIFAR-10, CIFAR-100, SVHN, and Ima-
geNet. Jégou et al. extend DenseNets to semantic segmen-
tation and obtain state-of-the-art results on CamVid dataset
(Jégou et al. 2017). PSPNet is also a state-of-the-art archi-
tecture for semantic segmentation. It has ranked at the first
place in ImageNet Scene Parsing Challenge 2016, PASCAL
VOC 2012 benchmark, and Cityscapes benchmark (Zhao et
al. 2017).

Interactive Image Segmentation. Interactive image seg-
mentation allows the user to specify annotations in forms
of scribbles/seeds (Boykov and Jolly 2001; Grady 2006;
Gulshan et al. 2010; Wang, Han, and Collomosse 2014;
Feng et al. 2016; Xu et al. 2016), control points (Kass,
Witkin, and Terzopoulos 1988; Mortensen and Barrett 1995;
Badoual et al. 2017), or bounding boxes (Rother, Kol-
mogorov, and Blake 2004; Wu et al. 2014; Cheng et al.
2015b) to guide the segmentation toward the region of in-
terest. These algorithms usually employ graph cuts, random
walks, level sets, or geodesic distance to segment the im-
ages according to the annotations provided by the user. In
general, it is easier for users to indicate the target object via
a bounding box, but the segmentation accuracy is also con-
strained by how precisely the box is drawn. The seed based
algorithms and the control-points based algorithms can both
tackle the situations of complex-shaped objects as long as
sufficient user inputs are given—more rounds of interactions
are needed than the bounding-box based algorithms.

Figure-Ground Segmentation with User Inputs We
propose a deep convolutional network for image segmen-
tation by leveraging the selection and defocus cues available
at the moment of taking pictures. Our approach differs from
the existing ones in several aspects: First, the task we aim to
solve is a new style of one-seed interactive image segmen-
tation involving a tap-and-shoot imaging mechanism. The
user only needs to interact with the touchscreen to focus the
target object by tapping, and our model will try to predict
the region of interest. Second, in comparison with the simi-
lar work (Xu et al. 2016), our deep convolutional network



Figure 2: An overview of the proposed deep convolutional network. Given an input image with an augmented channel S
representing the selection cue, the network can predict two heatmaps with respect to the target region and the background.

is end-to-end trained with significantly less training time.
Our predicted heatmaps have clearer object boundaries and
hence have no need to use the graph cut optimization as (Xu
et al. 2016). Last but not the least, our model integrates the
selection and defocus cues for predicting the region of inter-
est. The defocus cue implicitly learned by our deep convo-
lutional network is shown to be more beneficial to the seg-
mentation accuracy than handcrafted defocus estimation.

Approach
When the user taps the touchscreen of smartphone/camera
to focus on the target object and takes a picture, the tap-
ping action provides a selection cue, which indicates the re-
gion of interest. The captured image also contains an inher-
ent defocus cue, which separates the scene into an in-focus
plane and an out-of-focus background. We propose a deep
convolutional network that leverages the selection and defo-
cus cues derived from the tap-and-shoot interaction to solve
the figure-ground segmentation task. The selection cue is
transformed into an intensity map S as one additional in-
put channel. The image augmented with the additional se-
lection channel RGBS is then used to train the proposed
convolutional network. The defocus cue could also be esti-
mated as an intensity map D. However, D is not used in our
approach, but will be evaluated in the experiment section
for comparison. The trained network predicts two heatmaps
with respect to the regions of interest (foreground) and non-
interest (background). Fig. 2 illustrates the architecture of
our convolutional network.

To train our deep network, we first prepare data for the
tap-and-shoot scenario. We scale all input images in propor-
tion and center-crop into size 256× 256.

Training Samples. For each image provided with ground-
truth segmentation, we generate nine training images as fol-
lows: we apply three different blurring levels to the back-
ground region, and for each blurred image we randomly pick
three different tapping positions on the foreground region.
The training samples are constructed in this way to simulate

the tap-and-shoot scenario, in which the selected region is
in-focus and the background is out-of-focus.

Testing Samples. For each testing image, we directly aug-
ment the image with the additional selection channel S and
then feed the augmented image RGBS into the trained net-
work for prediction. The segmentation result can be easily
obtained by thresholding the probability output of the net-
work. Notice that, our model does not need to apply addi-
tional graph cut optimization as (Xu et al. 2016) to align the
segmentation boundaries.

Network Architecture
We formulate our problem as a binary classification prob-
lem, in which each pixel either belongs to a foreground re-
gion or a background region. The network input can be a
3-channel RGB image or an augmented image with any
combinations of additional feature channels, such as S, D
or both S and D. In our final approach, we choose to use a
4-channel inputRGBS. The output resolution is the same as
the original input resolution. The output contains two chan-
nels (heatmaps) representing the probabilities of being fore-
ground or background. We use cross entropy to measure the
probability error. The complete loss function is defined as
follows:

L = −
P∑
i=1

2∑
c=1

[yci log σ(xci ) + (1− yci ) log(1− σ(xci ))] ,

(1)
where c could be 1 or 2 to indicate the foreground or the
background. P is the number of total pixels, xci is the pre-
dicted value, yci is the ground truth label, and σ(·) is the soft-
max function. We have evaluated different models and the
comparisons will be discussed in the discussion section. Our
final model, illustrated in Fig. 2, is similar to U-net (Ron-
neberger, Fischer, and Brox 2015) but much simpler. Except
the input and output layer, we use exactly one convolutional
layer followed by a max-pooling layer in the down-sampling
phase and exactly one transpose convolutional layer fol-
lowed by a concatenated layer in the up-sampling phase.



Through the experiments we show that with this much sim-
plified architecture, our model achieves competitive perfor-
mance but requires significantly less space and training time.

Implementation Details
Channel Representation. To account for the computa-
tional cost with the augmented image channels, we represent
each image as a superpixel-level graph G = (V, E , ω). The
vertex set V is the set of superpixels and the edge set E con-
tains all links between every two adjacent superpixels. The
weighting function ω : E → R+

0 is defined as

ωij = e−θ1‖fi−fj‖2 , (2)

where fi and fj denote the CIE-Lab mean color features of
the adjacent superpixels vi and vj . The set V is constructed
via SLIC algorithm (Achanta et al. 2012) with roughly 800
superpixels. We keep θ1 = 10 fixed for all experiments.

Constructing the Selection Channel. Given a graph G
with a specified vertex vj ∈ V , the shortest path Φ(vi|vj)
from vertex vi to the specified vertex vj is defined as the
accumulated edge weights along the path. The shortest path
function Φ can be defined as

Φ(vi|vj) = min
v′1=vi,...,v

′
m=vj

m−1∑
k=1

ω(v′k, v
′
k+1),∀(v′k, v′k+1) ∈ E ,

(3)
where m denotes the path length. We use the function Φ to
estimate the label similarity between the unlabeled superpix-
els and the labeled superpixel.

When the user taps the touchscreen of the smart-
phone/camera to focus on the target object, the tapping lo-
cation yields a reliable annotation for indicating the region
of interest. In contrast, since the superpixels locating on the
image border are rarely to be the region of interest, assum-
ing these superpixels belong to the background is reasonable
(Wei et al. 2012; Wang, Han, and Collomosse 2014). There-
fore, we respectively label the two kinds of superpixels as
the region of interest (F ) and the background (B). Thus, we
can obtain two label similarity values for each unlabeled su-
perpixel.

To obtain the selection channel, we further use the sig-
moid function ρ to convert the difference between the two
label similarities (F andB) of each superpixel v to the range
[0, 1]:

ρ(|vF − vB |) =
1

1 + e−θ2(|vF−vB |)
, (4)

where vF denotes the label similarity of v to the region of
interest, vB denotes the label similarity of v to the back-
ground, and θ2 is defined as 0.33 in our experiments. Fig. 1b
shows the augmented channel of the selection cue.

Network Parameters. During the down-sampling phase,
we apply eight (2 × 2)-stride max-pooling layers on the
input of RGBS image with size 256 × 256 × 4 and ex-
tract the most high-level 1 × 1 × 512 features at the bot-
tleneck. In the up-sampling phase we reversely convert the

Table 1: This table summarizes the parameters of our net-
work architecture. The input size is 256 × 256 and has four
channels RGBS.

Layer Numbers of output
name feature map size

Conv1 input 32 256×256
Conv1 + pooling 64 128×128
Conv2 + pooling 128 64×64
Conv3 + pooling 256 32×32
Conv4 + pooling 512 16×16
Conv5 + pooling 512 8×8
Conv6 + pooling 512 4×4
Conv7 + pooling 512 2×2
Conv8 + pooling 512 1×1

Conv bottleneck 512 1×1
Deconv8 + concatenate 512 2×2
Deconv7 + concatenate 512 4×4
Deconv6 + concatenate 512 8×8
Deconv5 + concatenate 512 16×16
Deconv4 + concatenate 512 32×32
Deconv3 + concatenate 128 64×64
Deconv2 + concatenate 64 128×128
Deconv1 + concatenate 32 256×256

Conv output 2 256×256

high-level features into dense predictions with eight (2 ×
2)-stride transpose convolution (deconvolution) layers. The
complete setting can be found in Table 1. All the activation
functions are ReLU except the output layer, in which we
use softmax. We use batch normalization after every con-
volution/deconvolution layers to accelerate the converging
speed. We also apply dropout layers on the layers Deconv8
to Deconv5 for avoiding over-fitting. The dropout probabil-
ity is 0.2 during training and 0.0 during testing. In our exper-
iments, we also have tried to normalize the intensity values
of the input image into the range of [−1.0, 1.0], but the train-
ing process becomes unstable. We find that simply subtract-
ing the intensity values of the input image by 127.5 could
makes the training process easier to train.

Experiments
We first describe the evaluation methodology, the algorithms
in comparison, and the datasets that are evaluated in our
experiments. Then we show the comparison results of the
existing interactive image segmentation algorithms and our
method.

Methodology. To evaluate the segmentation accuracy, we
use the intersection-over-union (IoU) metric, which is de-
fined as |R

⋂
G|

|R
⋃
G| , where R denotes the segmentation result

and G denotes the ground-truth foreground object. All algo-
rithms are run on the same environment (Intel i7-4770 3.40
GHz CPU, 8GB RAM, NVIDIA Titan X GPU).

In Comparison with Other Algorithms. Our approach is
compared with six well-known interactive image segmenta-
tion algorithms, which are box based algorithms: GrabCut



Figure 3: The mean IoU score of each algorithm on five datasets.

(Rother, Kolmogorov, and Blake 2004), MilCut-struct (Wu
et al. 2014); and seed/scribble based algorithms: Lazy Snap-
ping (Li et al. 2004), Random Walks (Grady 2006), Inter-
active Graph Cuts (Boykov and Jolly 2001), Geodesic Star
Convexity (Gulshan et al. 2010)1.

Datasets. We evaluate all algorithms on four public
datasets. Each image contains one foreground region with
pixel-level ground-truth labeling. GrabCut dataset (Rother,
Kolmogorov, and Blake 2004): It contains 50 natural im-
ages. Berkeley dataset (McGuinness and O’Connor 2010):
It contains 100 images. The images are from the popular
Berkeley dataset (Martin et al. 2001). Extended complex
scene saliency dataset (ECSSD) (Shi et al. 2016): The
dataset contains 1,000 natural images. MSRA10K dataset
(Cheng et al. 2015a): This dataset contains 10,000 natural
images. We use MSRA10K dataset for training and test-
ing our network. We partition the dataset into three non-
overlapping subsets with the numbers of 8,000, 1,000, and
1,000 for training, validation, and testing. BlurBg dataset:
We select 500 blur-perceivable images from the above four
datasets for evaluation.

Quantitative Results
We use three kinds of figures to compare the segmentation
quality of each segmentation algorithm. Fig. 3 shows the
average IoU score of each segmentation algorithm. It ob-
viously demonstrates that our approach has higher segmen-
tation quality than all other algorithms on each dataset. As
we have expected, our approach has the best performance
while dealing with the blur-perceivable images such as the
images in the dataset ‘BlurBg.’ Notice that, Fig. 3 shows that
the blur-perceivable images are not trivial for other segmen-
tation algorithms.

1The programs of MilCut-struct are provided by the au-
thors. The programs of GrabCut and Lazy Snapping are imple-
mented by Gupta and Ramnath http://www.cs.cmu.edu/
˜mohitg/segmentation.htm. The code of Random Walks
is from http://cns.bu.edu/˜lgrady/software.html
The programs of Interactive Graph Cuts and Geodesic Star Con-
vexity are from http://www.robots.ox.ac.uk/˜vgg/
research/iseg/.

(a) GrabCut (b) Berkeley (c) MSRA10K

(d) ECSSD (e) BlurBg (f) Legend

Figure 4: The ratio of each algorithm above the specific seg-
mentation qualities in IoU metric.

(a) GrabCut (b) Berkeley (c) MSRA10K

(d) ECSSD (e) BlurBg (f) Legend

Figure 5: The ratio of each algorithm gets the top segmenta-
tion accuracy.



Table 2: Three architectures. The first column shows the size of network weights. The second column show the elapsed time
after 16K updates. The last five columns show the mean IoU scores on different datasets. We only update 16K times here for
comparisons while we update 260K times in our final setting, and the differences in performance get smaller at convergence.

Space (MB) Time (hrs) Grabcut Berkeley MSRA10K ECSSD BlurBg
FCN 652.45 4 0.7228 0.5564 0.8111 0.7025 0.8248

FCN-extended 801.71 6 0.7159 0.5548 0.8021 0.6847 0.8227
AE (Ours) 98.99 1.5 0.6909 0.5203 0.7689 0.6537 0.7992

Fig. 4 shows the ratio of each algorithm above the spe-
cific segmentation qualities in IoU metric on each dataset.
The larger ‘area under the curve’ means the better segmenta-
tion quality. This figure also demonstrates that our approach
surpasses all other algorithms in each demand IoU quality.

Fig. 5 shows the ratio of each algorithm that gets the top
segmentation accuracy on each dataset. The higher ratio that
an algorithm gets in a given dataset means the algorithm
is more suitable for being used in that dataset. This figure
shows that our approach performs at least 40% better than
other algorithms on the five datasets.

For comparison, our method takes about 0.28 seconds per
image with the aid of GPU. In comparison with the similar
work (Xu et al. 2016), our approach has roughly 15% and
2% IoU increments2 on the GrabCut dataset and the Berke-
ley dataset, respectively.

Qualitative Results
Fig. 6 shows the segmentation results. The results in Fig. 6
demonstrate that our segmentation method achieves better
performance than other algorithms.

Discussions
Network Comparison
We analyze three different deep networks in the aspect of
used memory, training speed, and performance as shown in
Table 2. All models are optimized using ADAM algorithm
with same learning rate 0.0001. The batch size is 9 and the
network is running on TitanX. We implement all of them
in Tensorflow and the Table 2 shows the results after 16k
updates.

The first model (FCN) is a direct adoption of FCN but
we initialize the weights with VGG19 pretrained on Ima-
geNet. Regarding the additional input channel, we initialize
it with zero values as (Xu et al. 2016). The second one (FCN-
extend) is based on FCN but we extend the up-sampling
phase by adding additional deconvolution layers and train
it from scratch. The skip layer also increases along with the
deconvolution, and the fuse layers are replaced with concate-
nation. The third one (AE), which is used in our approach, is
a simple auto-encoder as described in the previous section.

As shown in Table 2, our model uses fewer weights and
only requires one-sixth space compared with FCN, while the
FCN-extend uses the most parameters since it contains ad-
ditional layers. Regarding the training time, The table shows

2Since the code of the related work (Xu et al. 2016) is not yet
released, we report the values according to Fig. 4. of their paper.

that our model is three times faster than FCN and outper-
forms others. However, the prediction scores are almost the
same no matter what model is chosen. FCN gets higher
scores but it is initialized with pretrained model weights.
One main possible reason is that for the domain-specific task
like our scenario, a complicated architecture and redundant
parameters are not necessary. The results show that, in the
tap-and-shoot segmentation task, our simple model is good
enough and achieves comparable results with significant re-
duction of time and space. For reference, (Xu et al. 2016)
takes three days to fine-tune FCN-32s and five days to fine-
tune FCN-16s and FCN-8s. Our network only takes less than
two days for training from scratch but gets better perfor-
mance on GrabCut and Berkeley datasets.

Defocus Blur Learning
While training the convolutional network, we observe that
directly augment the input with a defocus channel D, which
is estimated by some off-the-shelf defocus estimation al-
gorithms, is actually harmful to the network performance
(see Fig. 7). This is because the current off-the-shelf defo-
cus estimation methods are not able to provide reliable es-
timations. The noisy defocus estimations would misguide
the network training. One possible solution is generating
the blur-background images, as is done in our training sam-
ples, to enforce the network to learn the defocus blur by it-
self. It seems that preparing training samples with multiple
blur-background images and then augmenting each image
with the additional selection channel can make the network
achieve better segmentation quality. Fig. 8 compares the ex-
ample segmentation results using different types of training
samples.

In Fig. 8, the network trained with RGB images without
blurring the image backgrounds is hard to separate those ob-
jects that have similar features but locate at different depths
(see the top two rows of Fig. 8). In contrast, the network
trained with RGBD images without blurring the image back-
grounds may fail to separate different objects locating at the
same depth (see the bottom two rows of Fig. 8).

Conclusion
We propose a highly efficient convolutional network that
learns to solve the figure-ground segmentation task under the
scenario of tap-and-shoot interaction. The trained network is
able to leverage the selection and defocus cues that are avail-
able at the moment of taking pictures. Our method achieves
high segmentation accuracy on various public datasets, es-
pecially for those images that contain in-focus foreground
objects and out-of-focus backgrounds.



Figure 6: The segmentation results of all algorithms. The green and red regions respectively indicate the correct and the wrong
segmentations. GrabCut and MilCut are guided by the box covering 81% central area of each image. Lazy Snapping, Random
Walks, Iterative Graph Cut, and Geodesic Star Convexity are guided by the foreground seed, locating on the centroid of the
ground-truth foreground region, and the background seed, selected randomly from the background area.

Figure 7: The mean IoU scores of our network trained with
two kinds of samples without blurring the image back-
grounds. Left set: using RGB training samples. Right set:
using RGBD training samples.

Figure 8: The green and red regions respectively indicate the
correct and the wrong segmentations.
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