
A Square-Root Sampling Approach to Fast Histogram-Based Search

Huang-Wei Chang

Stanford University

huangwei@stanford.edu

Hwann-Tzong Chen

National Tsing Hua University, Taiwan

htchen@cs.nthu.edu.tw

Abstract

We present an efficient pixel-sampling technique for

histogram-based search. Given a template image as a

query, a typical histogram-based algorithm aims to find the

location of the target in another large test image, by eval-

uating a similarity measure for comparing the feature his-

togram of the template with that of each possible subwin-

dow in the test image. The computational cost would be

high if each subwindow needs to compute its histogram and

evaluate the similarity measure. In this paper, we adopt the

probability-product kernels as the similarity measures, and

show that the computation of histograms and the evaluation

of the kernel-based similarities can be integrated through a

sampling approach. Specifically, we present a square-root

sampling method to avoid the computation of histograms,

and meanwhile, reduce the number of pixels required for

evaluating the similarity measure. The proposed approxi-

mation algorithm is time- and memory-efficient. The time

complexity of computing the similarity for each subwindow

is O(1). The memory requirement of our algorithm is not in

proportion to the size of the template or the number of his-

togram bins, which allows the use of more distinctive image

representations for better search accuracy.

1. Introduction

Histogram-based image representations such as color

histograms or histograms of oriented gradients are widely

used in computer vision. The advantages of using histogram

representations have been shown through various applica-

tions, e.g., image retrieval [10, 11, 21], image segmenta-

tion [6, 16, 19], shape analysis [1], object detection [3, 5, 7],

and tracking [4, 17]. For image data, a histogram can be

considered as a discrete probability distribution that charac-

terizes the local appearance by the low-level image features.

Most popular image features for generating the histogram

are color and gradient. To compute, for example, a color

histogram of an image patch, a standard procedure would

first convert the color information of each pixel into a quan-

tized value, and then the quantized value is mapped to an in-

dex of a corresponding histogram bin. The number of pixels

assigned to each bin is accumulated over the whole image

patch. A color histogram is generally robust to rotation, de-

formation, and small variations in lighting condition.

In this work, we address the problem of searching a tem-

plate in a test image using the histogram-based representa-

tions. The computational complexity of the search problem

mainly depends on two issues: i) computing the histogram

at a candidate subwindow, and ii) running through all pos-

sible subwindows to compare the histogram of each sub-

window with the one of the template. Two commonly-used

similarity measures for comparing histograms are the χ2

test statistic, e.g. [1], and the Bhattacharyya coefficient, e.g.

[4]. Both similarity measures involve some nonlinear terms

associated with the histogram of the candidate subwindow,

and both yield the global extrema when two histograms are

identical.

Previous algorithms that attempt to speed up the

histogram-based search have addressed the two aforemen-

tioned issues from several perspectives. Huang et al. [12]

address the redundancy in the computation of histograms,

and present an algorithm that updates the histograms of

neighboring subwindows by adding the rightmost column-

histogram and subtracting the leftmost one. The integral

histogram presented by Porikli [18] generalizes the idea of

integral image [22] to histogram computation. The compu-

tation of the integral histogram is very fast if the histogram

has only a small number of bins. However, the computa-

tional cost and the requirement of memory for integral his-

togram are proportional to the number of histogram bins.

This limitation makes the integral histogram hard to be ap-

plied to situations that require the number of bins to be large

so that the histogram could yield a more distinctive repre-

sentation. More recently, Sizintsev et al. [20] present the

distributive histogram which is based on fast median filter-

ing. The distributive histogram shows better performance

than previous approaches, but the computational cost and

memory requirement of the distributive histogram are still

in proportion to the number of histogram bins. For a search

task involving a color histogram of thousands of bins, the

scale factor of bin number would override the factor of im-



age size, and thus the efficiency would be degraded.

Regarding the issue of comparing the histogram of the

template with the ones of candidate subwindows, it would

be time-consuming if an algorithm straightforwardly eval-

uates the similarity measure over all possible subwindows

in the test image. If prior information about the probable

target locations is available, tracking can be taken into con-

sideration for reducing unnecessary evaluations of similar-

ity measures, e.g., [4, 17]. Only local search is needed if

the target is assumed to be nearby. More recently , Lam-

pert et al. present the efficient subwindow search (ESS) al-

gorithm [15] that uses the branch-and-bound technique to

evaluate the similarity measures on candidate locations ac-

cording to their priorities. To gain the speedup from the ESS

algorithm, one needs to find a good bound on the similar-

ity measure; the bound should be easy to evaluate and also

tight enough to ensure quick convergence. As a result, the

choices of histogram representations and similarity mea-

sures may be restricted. For example, it is not trivial to find

a good bound for the ‘normalized’ color histogram, with

Bhattacharyya coefficient as the similarity measure. With-

out a good bound, the ESS algorithm will perform just as an

exhaustive search. Standard multi-resolution, coarse-to-fine

techniques such as pyramid methods [9] are also often used

to speed up the search, and in general, all search algorithms

may benefit from the use of multi-resolution techniques.

This paper presents a new sampling approach to the

problem of histogram-based search. The key idea of the

proposed approximate sampling algorithm is to avoid the

direct computation of histograms in the test image, and also

to reduce the number of pixel positions required for evaluat-

ing the similarity measure. Our approximation algorithm is

time- and memory-efficient. Unlike the integral histogram,

the storage requirement of our approach is not in propor-

tion to the number of histogram bins. Hence our algorithm

allows the approximate search of large templates and also

the use of a normalized histogram with a sufficient number

of bins, which would yield a more distinctive representation

and in turn improve the accuracy of search. We show that,

by using the probability product kernels [13] as the similar-

ity measures for comparing normalized histograms, it is not

necessary to compute the histogram of each subwindow if

our goal is merely to evaluate the similarity measure. The

objective of this paper is to provide an alternative perspec-

tive on histogram-based search, through the derivation of

a square-root pixel-sampling procedure that integrates, and

thus simplifies, the computation of histograms and the eval-

uation of similarity measures.

2. Notation and Problem Setting

Our goal is to do fast template matching by comparing

two histograms. Suppose we are given a template T and

we have computed its histogram representation from low-

level image features, e.g., color or gradient. The values of

image features are quantized into discrete numbers corre-

sponding to the bin indices of the histogram. The number

of pixels having the same bin-index is accumulated over the

whole template to build the histogram. With the histogram-

based representation, we hope to search inside a test image

and find the subwindows that have similar histograms to the

template T . We denote the histogram of T as hT , and the

number of pixels inside T as |T |, which is also equal to the

sum over bins, |T | =
∑

k hT (k). Let p be the normalized

version of hT given by p = hT /|T |, so we can consider p
as a discrete distribution, with

∑

k p(k) = 1. Furthermore,

let the histogram obtained at a candidate subwindow R in

the test image be hR and its normalized version be q.

Given two normalized histograms p and q, we need to

use some similarity measure for comparing p and q. The

similarity measure reflects how likely the subwindow R
will contain the target we try to find. We discuss below

the similarity measures that are used in this work.

3. Probability Product Kernels

We use the probability product kernels as the similarity

measures for comparing two discrete distributions. Simi-

lar to [13] on the continuous distributions, we may define a

family of kernels Kρ : P ×P → R on the space of normal-

ized discrete distributions over some index set Ω. Specif-

ically, the general probability product kernel between nor-

malized histograms p and q is defined as

Kρ(p, q) =
∑

k

p(k)ρq(k)ρ . (1)

It is easy to show that such a similarity measure is a valid

kernel, since for any p1, p2, . . . , pn ∈ P , the Gram ma-

trix K consisting of elements Kij = Kρ(pi, pj) is positive

semidefinite:

∑

i

∑

j

αiαjKρ(pi, pj) =
∑

k

(

∑

i

αi pi(k)
ρ

)2

≥ 0 ,

(2)

for αi, α2, . . . , αn ∈ R.

Different ρ values correspond to different types of prob-

ability product kernels. For ρ = 1, we have

K1(p, q) =
∑

k

p(k) q(k) = Ep [q(k)] = Eq [p(k)] , (3)

which can be referred to as the expected likelihood ker-

nel [13]. Furthermore, for ρ = 1/2, we obtain

K 1

2

(p, q) =
∑

k

√

p(k) q(k) , (4)

which is known as the Bhattacharyya coefficient [2], or can

be referred to as the Bhattacharyya kernel [13].



Note that the Bhattacharyya kernel has values within

[0, 1]. In particular, the Bhattacharyya kernel is at its max-

imum when p and q are identical, since by that we would

get
∑

k

√

p(k) q(k) =
∑

k

√

p(k) p(k) =
∑

k p(k) = 1.

The Bhattacharyya kernel has been shown to be a very good

similarity measure for discrete distributions, and has been

successfully used in several vision applications, e.g., visual

tracking [4], [17], and handwritten digits recognition [14].

On the other hand, the expected likelihood kernel is not as

effective as the Bhattacharyya kernel in comparing distribu-

tions because the expected likelihood kernel could be max-

imized when one distribution is peaked at the mode of the

other, although the two distributions are not identical. In

this work we consider the Bhattacharyya kernel as the main

similarity measure for comparing discrete distributions.

4. Fast Evaluation of the Bhattacharyya Kernel

over an Image

The task of locating a given template inside a test image

will be accomplished through evaluating the Bhattacharyya

kernel over the template histogram and the histogram of

each possible subwindow inside the test image. A bottle-

neck of the efficiency is due to the iterative computation of

the histogram for each possible subwindow. The key idea

of our approach is to avoid the computation of histograms,

and to enable the direct approximation to the Bhattacharyya

kernel over the pre-processed test image.

Before introducing our method of evaluating the Bhat-

tacharyya kernel, for clarity, we begin with the simpler case

of computing the expected likelihood kernel. As mentioned

previously, the expected likelihood kernel is not as effec-

tive as the Bhattacharyya kernel. Nevertheless, the expected

likelihood kernel is rather easy to compute using the tech-

nique of back-projection [21]. It is worth noting that we

can obtain the exact rather than approximate results on the

expected likelihood kernel using back-projection. Recall

that the expected likelihood kernel is defined by K1(p, q) =
∑

k p(k) q(k). We may compute hT and p in advance with

the given template image. For the kth bin of hT , its value is

obtained by counting the pixels that are mapped to the index

k:

hT (k) =
∑

x∈T

δ[b(x) − k] , (5)

where δ[n] is the Kronecker delta, with δ[n] = 1 if n = 0,

and δ[n] = 0 otherwise. The mapping function b(x) maps

a pixel x to its corresponding bin index.

The computation of the expected likelihood kernel can

be expressed as

K1(p, q) =
∑

k

p(k) q(k)

=
∑

k

p(k)

(

1

|R|

∑

x∈R

δ[b(x) − k]

)

=
1

|R|

∑

x∈R

∑

k

p(k) δ[b(x) − k]

=
1

|R|

∑

x∈R

p (b(x)) .

(6)

Therefore, the computation of the expected likelihood ker-

nel can be done by taking the sum of values p(b(x)) within

subwindow R. As a result, we are able to use the following

algorithm to evaluate the expected likelihood kernel over

the whole test image. The output of the following algo-

rithm is a support map that reflects the similarity between

the template and each subwindow.

Fast Evaluation of Expected Likelihood Kernel

1. Compute the normalized histogram p for the template.

2. Quantize the image features of each pixel x in the test

image to obtain its bin index b(x).

3. Create an auxiliary image as large as the test image.

Assign the value p(b(x)) to the pixel at the correspond-

ing position in the auxiliary image.

4. Build the integral image [22] of the auxiliary image.

The kernel value for each subwindow can be evalu-

ated by adding and subtracting four values at the corner

of the subwindow using the integral image technique.

Create a support map consisting of the kernel values as

the output.

In the following we introduce a square-root rejection

sampling scheme for evaluating the expected likelihood ker-

nel. Unlike the previous algorithm, the auxiliary image in

this case contains only a small number of pixels whose val-

ues are nonzero. The algorithm can be considered as an

approximation version of the previous algorithm.

Sparse Evaluation of Expected Likelihood Kernel via

Sampling

1. Compute the normalized histogram p for the template

image, and take the square root to get
√

p(k) of each

bin k.

2. Quantize the image features of each pixel x in the test

image to obtain the bin index b(x).



3. Create an auxiliary image of the test image. The de-

fault value for every pixel in the auxiliary image is

set to zero. For each pixel x of the test image, ap-

ply rejection sampling, and accept x with probability
√

p(b(x)). In addition, assign the value
√

p(b(x)) to

the accepted pixel in the auxiliary image.

4. Build an integral image or more efficient data struc-

tures for the sparse auxiliary image, and compute the

sum (the approximate kernel value) over each subwin-

dow. Create a support map consisting of the sums as

the output.

Justification: For each subwindow R, the probability of

a pixel belonging to the kth bin and being accepted via

the rejection sampling should be
√

p(k). Therefore, the

expected number of the sampled pixels belonging to the

kth bin within the subwindow R is
√

p(k) hR(k), where
√

p(k) is the survival rate of the rejection sampling, and

hR(k) is the original number of pixels belonging to the kth

bin in subwindow R of the test image. The sparse evalu-

ation algorithm thus approximates the expected likelihood

kernel by

∑

k

√

p(k) ·
√

p(k) hR(k) =
∑

k

p(k) hR(k)

= |R|
∑

k

p(k) q(k) = |R|K1(p, q) .
(7)

That is, the sparse evaluation algorithm can produce, on

average, approximately the same result as the original fast

evaluation algorithm. The advantage of the sparse evalua-

tion algorithm is that we have a sparse auxiliary image, and

more efficient data structures may be used to substitute for

the integral image if needed.

Now we go on describing the sampling-based evaluation

algorithm of the Bhattacharyya kernel, which is the focus of

this paper. In the light of back-projection, it would be help-

ful if we can derive a similar way of evaluating the Bhat-

tacharyya kernel for each subwindow. We use a rejection

sampling scheme to select a small number of pixels from

the test image, and on those selected pixels we perform lo-

cal density estimation in a neighborhood to achieve the ef-

fect of accepting only a square-root number of pixels within

the subwindow.

The following procedure is used to select a subset of pix-

els from the test image. This procedure will transform the

test image into a very sparse image.

Sparse Evaluation of Bhattacharyya Kernel via Square-

Root Sampling

1. Compute the normalized histogram p for the template,

and take the square root to get
√

p(k) of each bin k.

2. Quantize the image features of each pixel x in the test

image to obtain its bin index b(x).

3. Create a binary auxiliary image as large as the test im-

age. All bits of the auxiliary image are set to zero by

default. For each pixel x, apply rejection sampling,

and accept x with probability
√

p(b(x)). Change the

bit to 1 for the accepted pixel in the auxiliary image.

We will obtain a sparse auxiliary image after the rejec-

tion sampling.

4. For each accepted pixel x̂ in the sparse auxiliary im-

age, we estimate the local density through sampling

randomly N pixels from the test image inside a neigh-

borhood N (x̂) around x̂, and then count the number

N ′ of pixels belonging to the b(x̂)-th bin. The lo-

cal density is thus estimated by N ′/N and the ex-

pected value of hN (x̂)(b(x̂)) can be approximated

as hN (x̂)(b(x̂)) ≃ |R| N ′

N
. (In practice we choose

N (x̂) with |N (x̂)| ≈ 0.7|R|, where |N (x̂)| is the

area of N (x̂)). Take the square root and obtain
√

hN (x̂)(b(x̂)). Again, apply rejection sampling, and

accept x̂ with probability 1/
√

hN (x̂)(b(x̂)). Pixels

that do not survive during the rejection sampling are

eliminated from the sparse auxiliary image.

5. Build an integral image of the sparse auxiliary image,

and count the number of the 1-bits within each sub-

window of the sparse auxiliary image. The output is

a support map consisting of the counts (approximating

to the kernel values).

Justification. We assume that, for each subwindow R in

the test image, the values of
√

hN (x̂)(k) for x̂ ∈ R with

b(x̂) = k uniformly approximate to
√

hR(k), and we de-

note the uniform values by

√

h̃R(k). Such an approxi-

mation would be reliable if the neighborhoods N (x̂) suffi-

ciently overlap R. Based on the above assumption, we may

find that in the sparse auxiliary image the expected num-

ber of the survived pixels belonging to the kth bin is ap-

proximated by
√

p(k) hR(k) /
√

h̃R(k), where
√

p(k) is

the survival rate of the first round of rejection sampling,

1/
√

h̃R(k) is the approximate survival rate of the second

round of rejection sampling based on the local densities,

and hR(k) is the original number of pixels belonging to the

kth bin in subwindow R of the test image. Accordingly, the

expected number of 1-bits within a subwindow inside the

sparse auxiliary image may be considered as an approxima-

tion to the Bhattacharyya kernel:

∑

k

1 ·

√

p(k) hR(k)
√

h̃R(k)
≃
∑

k

√

p(k)
√

hR(k)

=
√

|R| K 1

2

(p, q).

(8)



The reliability of the approximation depends on the assump-

tion and the characteristics associated with the test image,

and we will examine the proposed algorithm by assessing

the quality of search results under various conditions. The

computations of estimating local densities and counting the

1-bits over subwindows are very fast because only a small

number of sampled pixels are involved. Note that the use

of the integral image is not essential; more efficient data

structures such as 2D range trees can be considered to take

advantage of the sparsity of sampled pixels.

5. Algorithm Analysis

In this section we provide an analysis of the square-root

sampling algorithm for Bhattacharyya kernel evaluation. To

begin with, let B denote the number of histogram bins. The

number of pixels in a test image Y is defined by |Y|. We

assume the number of pixels that survive the first round of

square-root rejection sampling is M ; this number is gener-

ally much smaller than |Y|. Furthermore, as described in the

algorithm, the number of pixels selected for local density

estimation is N . Since the first step of the algorithm is per-

formed only once for the template’s histogram (in O(|T |)
time) and can be done in advance, we ignore this step in the

analysis of computational cost. The time complexity for the

remaining steps is summarized as follows.

• In Step 2, obtaining the bin index for each pixel in the

test image can be done in O(|Y|) time.

• In Step 3, rejection sampling for each pixel takes

O(|Y|) time, and assigning values to accepted pixels

takes O(M) time.

• In Step 4, for each pixel accepted in Step 3, estimating

the local density by sampling N pixels takes O(N)
time. We have M pixels being accepted, so in this part

we need O(MN) time. However, we may specifically

choose N to ensure O(MN) = O(|Y|).

• In Step 5, the computation regarding the integral image

can be done in less than O(|Y|) time.

Consequently, the total computational cost is O(|Y|), and

the time complexity of evaluating the kernel value at each

subwindow is thus only O(1). Note that the two state-

of-the-art histogram-based algorithms, the integral his-

togram [18] and the distributive histogram [20], both have

O(|Y|B) time complexity. For histograms with many bins,

(e.g., the color histogram used in [4] has 4, 096 bins), the

computation cost regarding the factor of B would be large.

Finally, the memory requirement for the square-root sam-

pling algorithm is O(|Y|), which is due to the use of the

sparse auxiliary image.

Paintings Caltech 101

200× 200 120× 120

Figure 1. Examples of test images and query images for the two

sets of experiments.

6. Experiments

We test the efficiency and reliability of the proposed

sampling approach using different types of images with

variations. In all experiments, we use color histograms to

represent the template and the subwindows in the test im-

age. For a color histogram of 4, 096 bins, each of the RGB

channels is quantized to have 16 levels, and jointly the RGB

values of a pixel decide a bin index ranging from 1 to 163.

For each query, a bounding box corresponding to the sub-

window having the largest kernel value (the maximum of

the support map) is chosen as the search result. We compare

five algorithms: i) fast evaluation of expected likelihood

kernel (ELK), ii) sparse evaluation of expected likelihood

kernel (SELK), iii) sparse evaluation of Bhattacharyya ker-

nel via square-root sampling (SBTCY), iv) sum of squared

difference between two normalized histograms (SSDupdate)

using the updating scheme [12] for fast computation, and v)

exact evaluation of Bhattacharyya kernel using the updating

scheme (BTCYupdate) for efficient computation. The first

three algorithms are presented in this paper, and the last two

are standard approaches for comparison. All experiments

are done on a Core2 Duo 1.6GHz laptop with 3GB RAM,

and all algorithms are implemented in C.

In the first set of experiments we use 60 images of paint-

ings containing a wide variety of styles and colors. At each

run of the experiment, we randomly choose a painting as

the background and another as the target. The background

image is resized to 1000× 1000 pixels and the target image

is resized to 200 × 200 pixels. We paste the target image

onto the background image to create a test image. The tar-

get image is used as the template to be searched inside the

test image. To add variations, we first rotate the test image

by a random angle within [−15◦, 15◦], and then transform



the test image by a matrix I + 0.1A, where A is a 2-by-2
matrix with elements drown from a zero-mean unit-variance

Gaussian, and finally, a motion-blur by 20 pixels in a ran-

dom direction is applied to the test image. Examples of the

resulting test image and the template for query are shown

in the left column of Fig. 1. We perform the searches using

the five algorithms, and compute the accuracy as the per-

centage of the search result overlapping the ground-truth

location. We repeat 300 runs of experiments and the per-

formances of the five algorithms are shown in Fig. 2. Three

sizes of color histograms with 83, 163, and 323 bins have

been tested. The proposed SBTCY algorithm achieves sim-

ilar accuracy as the exact-evaluation algorithms SSDupdate

and BTCYupdate. A query by SBTCY takes about 0.5s.

In the second set of experiments we use the object im-

ages from the Caltech 101 database [8]. We randomly

choose one object image from each category, excluding the

‘faces easy’ category. We resize each image to 120 × 120
pixels and arrange the 100 chosen images on a 10-by-10
grid to generate an image of size 1200 × 1200 pixels. We

also apply random rotation, scaling, shearing, and motion-

blur to the tiled image and obtain various test images, as

shown in Fig. 1. We then pick each of the 100 object im-

ages in turn and use it as the template to perform the search

on a random test image. We repeat the whole process three

times, and thus perform, in total, 300 queries with 300 dif-

ferent templates on different test images. The tasks are more

difficult since many object images are not colorful and in-

clude a large portion of uniform background. The perfor-

mances of the five algorithms are shown in Fig. 3. The ac-

curacy of SBTCY is comparable to SSDupdate, but not as

good as BTCYupdate when the number of bins decreases.

7. Discussion

As shown in the experimental results, the square-root

sampling approach can be applied to fast histogram-based

search, and is able to yield reliable search results similar to

exact evaluations. The proposed approximation algorithm

is more suitable for colorful images like paintings and its

gain in computation time is more significant when the size

of templates and the number of bins are large. This type of

sampling approach that integrates the computation of image

representations with the evaluation of similarity measures

might also be useful for other applications based on differ-

ent image features. We are also seeking to get more insight

into the theoretical validity of such approaches.

Acknowledgment. We thank the reviewers for their helpful

comments. We are especially grateful to the anonymous Area

Chairs for the valuable and insightful suggestions. This research

was supported in part by grants 98-EC-17-A-19-S2-0052 and 98-

2221-E-007-083-MY3.

References

[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching and

object recognition using shape contexts. TPAMI, 24(4):509–

522, 2002.

[2] A. Bhattacharyya. On a measure of divergence between two

statistical populations defined by their probability distribu-

tions. Bull. Calcutta Math. Soc., 35:99–110, 1943.

[3] S. Birchfield. Elliptical head tracking using intensity gradi-

ents and color histograms. In CVPR, pages 232–237, 1998.

[4] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object

tracking. TPAMI, 25(5):564–575, 2003.

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR (1), pages 886–893, 2005.

[6] J. Delon, A. Desolneux, J. L. Lisani, and A. B. Petro. A

nonparametric approach for histogram segmentation. TIP,

16(1):253–261, 2007.

[7] F. Ennesser and G. G. Medioni. Finding waldo, or focus of

attention using local color information. TPAMI, 17(8):805–

809, 1995.

[8] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative

visual models from few training examples: An incremental

bayesian approach tested on 101 object categories. In Work-

shop on Generative-Model Based Vision, 2004.

[9] R. C. Gonzalez and R. E. Woods. Digital Image Processing.

Prentice-Hall, Inc., 2001.

[10] J. L. Hafner, H. S. Sawhney, W. Equitz, M. Flickner, and

W. Niblack. Efficient color histogram indexing for quadratic

form distance functions. TPAMI, 17(7):729–736, 1995.

[11] J. Huang, R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih. Im-

age indexing using color correlograms. In CVPR, pages 762–

768, 1997.

[12] T. Huang, G. Yang, and G. Tang. A fast two-dimensional

median filtering algorithm. IEEE Transactions on Acoustics,

Speech, and Signal Processing, 27(1):13–18, 1979.

[13] T. Jebara and R. I. Kondor. Bhattacharyya and expected like-

lihood kernels. In COLT, pages 57–71, 2003.

[14] R. I. Kondor and T. Jebara. A kernel between sets of vectors.

In ICML, pages 361–368, 2003.

[15] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond

sliding windows: Object localization by efficient subwindow

search. In CVPR, 2008.

[16] X. Liu and D. Wang. Image and texture segmentation using

local spectral histograms. TIP, 15(10):3066–3077, 2006.

[17] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet. Color-based

probabilistic tracking. In ECCV (1), pages 661–675, 2002.

[18] F. M. Porikli. Integral histogram: A fast way to extract his-

tograms in cartesian spaces. In CVPR (1), pages 829–836,

2005.

[19] J. Puzicha, J. M. Buhmann, and T. Hofmann. Histogram

clustering for unsupervised image segmentation. In CVPR,

pages 2602–2608, 1999.

[20] M. Sizintsev, K. G. Derpanis, and A. Hogue. Histogram-

based search: A comparative study. In CVPR, 2008.

[21] M. J. Swain and D. H. Ballard. Color indexing. IJCV,

7(1):11–32, 1991.

[22] P. A. Viola and M. J. Jones. Robust real-time face detection.

IJCV, 57(2):137–154, 2004.



0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

runs

a
c
c
u

ra
c
y

 

 

ELK

SELK

SBTCY
SSD

update

BTCY
update

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

runs

a
c
c
u

ra
c
y

 

 

ELK

SELK

SBTCY
SSD

update

BTCY
update

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

runs

a
c
c
u

ra
c
y

 

 

ELK

SELK

SBTCY
SSD

update

BTCY
update

(a) 83 bins (b) 163 bins (c) 323 bins

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

runs

s
e

c
o

n
d

s

 

 

ELK

SELK

SBTCY
SSD

update

BTCY
update

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

runs

s
e

c
o

n
d

s

 

 

ELK

SELK

SBTCY
SSD

update

BTCY
update

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

runs

s
e

c
o

n
d

s

 

 

ELK

SELK

SBTCY
SSD

update

BTCY
update

(d) 83 bins (e) 163 bins (f) 323 bins

Figure 2. Experiment 1: Paintings. (a), (b), and (c) are the sorted accuracy of the five algorithms over the 300 runs of queries. (d), (e), and

(f) are the sorted timing results. The size of test image is about 1000 × 1000 pixels and the size of query template is 200 × 200 pixels.

The accuracy of the proposed approximation algorithm SBTCY is comparable to the accuracy of exact evaluations done by SSDupdate and

BTCYupdate. Generally, SBTCY is 10 times faster than SSDupdate and BTCYupdate. Typically a query by SBTCY takes about 0.5s.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

runs

a
c
c
u

ra
c
y

 

 

ELK

SELK

SBTCY
SSD

update

BTCY
update

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

runs

a
c
c
u

ra
c
y

 

 

ELK

SELK

SBTCY
SSD

update

BTCY
update

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

runs

a
c
c
u

ra
c
y

 

 

ELK

SELK

SBTCY
SSD

update

BTCY
update

(a) 83 bins (b) 163 bins (c) 323 bins

0 50 100 150 200 250 300
0

2

4

6

8

10

12

runs

s
e

c
o

n
d

s

 

 

ELK

SELK

SBTCY
SSD

update

BTCY
update

0 50 100 150 200 250 300
0

5

10

15

20

25

30

runs

s
e

c
o

n
d

s

 

 

ELK

SELK

SBTCY
SSD

update

BTCY
update

0 50 100 150 200 250 300
0

5

10

15

20

25

runs

s
e

c
o

n
d

s

 

 

ELK

SELK

SBTCY
SSD

update

BTCY
update

(d) 83 bins (e) 163 bins (f) 323 bins

Figure 3. Experiment 2: Caltech 101. (a), (b), and (c) are the sorted accuracy of the five algorithms over the 300 runs of queries. (d), (e),

and (f) are the sorted timing results. The size of test image is about 1200× 1200 pixels and the size of query template is 120× 120 pixels.

The tasks are more difficult since many object images are not colorful and contain a large part of uniform background. The performances

are not as good as those in Experiment 1. Note that the accuracy of SBTCY using 16
3 and 32

3 bins is better than SSDupdate.


