
09810CS 565300 – Statistical Learning Theory

National Tsing Hua University 8 December 2009
Name: Midterm Exam

Midterm Exam

Time: 1:10pm-3:00pm
No discussion is allowed.
You may refer to any related materials.
Use the mathematical notation of PRML as possible as you can.
Gaussian identities:

p(x) =N (x|µ,Λ−1) (2.113)

p(y|x) =N (y|Ax + b,L−1) (2.114)

p(y) =N (y|Aµ + b,L−1 + AΛ−1AT) (2.115)

p(x|y) =N (x|Σ{ATL(y − b) + Λµ},Σ) (2.116)

Σ =(Λ + ATLA)−1 (2.117)

1. (20 points) Bayesian linear regression, posterior → prior

Consider a linear basis function model with the likelihood

p(t|X,w, β) =
N∏

n=1

N (tn|w
Tφ(xn), β−1)

and the prior p(w) = N (w|m0,S0), and suppose that we have already observed N data
points, so that the posterior distribution over w is given by p(w|t) = N (w|mN ,SN),
where mN = SN(S−1

0 m0 + βΦT

Nt) and S−1
N = S−1

0 + βΦT

NΦN . The matrix ΦN has N
rows, each of which is a row vector φ(xn)T. The posterior can be regarded as the prior
for the next observation.

(1) Consider an additional data point (xN+1, tN+1), and apply (2.113), (2.114), (2.116).
Write down x,y,A,b,L,µ,Λ,Σ in (2.113), (2.114), (2.116), in terms of the corre-
sponding variables, means, and (co)variances of the prior and the likelihood. For
example, x ≡ w, b ≡ 0.

(2) Show that the resulting posterior distribution is also given by

p(w|t) = N (w|mN+1,SN+1) ,

where mN+1 = SN+1(S
−1
0 m0 + βΦT

N+1t) and S−1
N+1 = S−1

0 + βΦT

N+1ΦN+1.

Solution:

(1) By (2.113) and (2.114):
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x ≡ w, b ≡ 0, µ ≡ mN , Λ−1 ≡ SN , y ≡ tN+1, A ≡ φ(xN+1)
T, L−1 ≡ β−1.

(2) By (2.116) and (2.117):

Σ−1 = Λ + ATLA ⇒

S−1
N+1 = S−1

N + βφ(xN+1)φ(xN+1)
T = S−1

0 + βΦT

NΦN + βφ(xN+1)φ(xN+1)
T = S−1

0 +

βΦT

N+1ΦN+1.

Σ{ATL(y − b) + Λµ} ⇒

mN+1 = SN+1(φ(xN+1)βtN+1 + S−1
N mN) = SN+1(φ(xN+1)βtN+1 + S−1

0 m0 + βΦT

Nt) =
SN+1(S

−1
0 m0 + βΦT

N+1t).

2. (20 points) Multiclass logistic regression

Consider the posterior probabilities of K classes given by the softmax functions

p(Ck|φ) = yk(φ) =
exp(ak)∑
j exp(aj)

where the ‘activations’ ak are given by

ak = wT

k φ .

(1) Show that the derivatives of the softmax are given by

∂yk

∂aj

= yk(Ikj − yj)

where Ikj are the elements of the identity matrix.

(2) Show that the gradients of the cross-entropy error function (negative logarithm of
the likelihood function) are given by

∇
wj

− ln p(T|w1, . . . ,wK) =
N∑

n=1

(ynj − tnj)φn ,

where T is an N ×K matrix of target variables. The nth row of T is the target vector
tn, which is a binary target vector of length K that uses the 1-of-K coding scheme.
The matrix T has elements tnj = Ijk if pattern n is from class Ck.

Solution:

*For details, see the lecture notes of week 7, pages 4 and 5.

(1)

∂yk

∂ak

=
exp(ak)∑
i exp(ai)

−

(
exp(ak)∑
i exp(ai)

)2

= yk(1 − yk) ,
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∂yk

∂aj

= −
exp(ak) exp(aj)

(
∑

i exp(ai))2
= −ykyj , for j 6= k .

Therefore,
∂yk

∂aj

= yk(Ikj − yj) .

(2) Let E ≡ − ln p(T|w1, . . . ,wK) = −
∑N

n=1

∑K

k=1 tnk ln ynk. We obtain

∂E

∂ynk

= −
tnk

ynk

.

Owing to the 1-of-K coding scheme, we have
∑

k tnk = 1. By the chain rule:

∂E

∂anj

=
K∑

k=1

∂E

∂ynk

∂ynk

∂anj

= −
K∑

k=1

tnk

ynk

ynk(Ikj − ynj) = ynj − tnj .

Again, by the chain rule:

∇
wj

E =
N∑

n=1

∂E

∂anj

(
∇

wj
anj

)
=

N∑

n=1

(ynj − tnj)φn .

3. (20 points) Generative classification model and maximum likelihood

Consider a generative classification model for K classes defined by prior class proba-
bilities p(Ck) = πk and general class-conditional densities p(φ|Ck) where φ is the input
feature vector. Suppose we are given a training data set {φn, tn} where n = 1, . . . , N ,
and tn is a binary target vector of length K that uses the 1-of-K coding scheme, so
that it has components tnj = Ijk if pattern n is from class Ck. Assuming that the data
points are drawn independently from this model, show that the maximum-likelihood
solution for the prior probabilities is given by

πk =
Nk

N

where Nk is the number of data points assigned to class Ck.

Solution:

PRML Exercise 4.9. The solution is available on the book web site.

The log-likelihood is given by

ln p({φn, tn}|{πk}) =
N∑

n=1

K∑

k=1

tnk{ln p(φn|Ck) + ln πk} .
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We need to satisfy the constraint
∑

k πk = 1. Consequently, we maximize

ln p({φn, tn}|{πk}) + λ

(
∑

k

πk − 1

)
.

Setting the derivative with respect to πk equal to zero, we obtain

N∑

n=1

tnk

πk

+ λ = 0 ,

and therefore

−πkλ =
N∑

n=1

tnk = Nk .

Summing both sides over k we have λ = −N , and hence πk = Nk/N .

4. (30 points) Kernelizing Fisher’s linear discriminant for two classes.

Consider the Fisher criterion in the form

J(w) =
wTSBw

wTSWw
,

as shown in Eq. (4.26) on page 189 of PRML. Change Eq. (4.20) into y = wTφ(x)
and derive a ‘kernelized’ version of Fisher’ linear discriminant for two classes. Note
that the kernelized version involves only kernel evaluations. The implicit function φ(x)
should not appear in the final result.

Solution:

Problem 4 of assignment 4.

5. (40 points) ν-SV regression

Consider the following primal optimization problem in which C is a regularization
constant and ν ≥ 0:

minimize
1

2
‖w‖2 + C ·

(
νǫ +

1

N

N∑

n=1

(ξn + ξ̂n)

)

subject to tn ≤ y(xn) + ǫ + ξn ,

tn ≥ y(xn) − ǫ − ξ̂n ,

ξn ≥ 0, ξ̂n ≥ 0, and ǫ ≥ 0 ,

n = 1, . . . , N .
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(1) Introduce multipliers an, ân, µn, µ̂n, and β for the respective constraints, and write
down the Lagrangian function.

(2) Set the derivatives with respect to the primal variables equal to zero, and write
down the corresponding four equations.

(3) Derive the dual problem.

(4) Write down the corresponding KKT conditions, and give a brief analysis on the
results.

Solution:

(1)

L =
1

2
‖w‖2 + Cνǫ +

C

N

N∑

n=1

(ξn + ξ̂n) − βǫ −
N∑

n=1

(µnξn + µ̂nξ̂n)

−
N∑

n=1

an(y(xn) + ǫ + ξn − tn) −
N∑

n=1

ân(tn − y(xn) + ǫ + ξ̂n) .

(2)

∂L

∂w
⇒ w =

N∑

n=1

(an − ân)φ(xn) ,

∂L

∂b
⇒

N∑

n=1

(an − ân) = 0 ,

∂L

∂ǫ
⇒ C ν −

N∑

n=1

(an + ân) − β = 0 ,

∂L

∂ξn

⇒ an + µn =
C

N
, n = 1, . . . , N,

∂L

∂ξ̂n

⇒ ân + µ̂n =
C

N
, n = 1, . . . , N.
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(3)

maximize
N∑

n=1

(an − ân)tn −
1

2

N∑

n=1

N∑

m=1

(an − ân)(am − âm)k(xn,xm)

subject to
N∑

n=1

(an − ân) = 0 ,

N∑

n=1

(an + ân) ≤ C ν ,

0 ≤ an ≤
C

N
, 0 ≤ ân ≤

C

N
, n = 1, . . . , N .

(4)

an(ǫ + ξn + y(xn) − tn) = 0 ,

ân(ǫ + ξ̂n − y(xn) + tn) = 0 ,

µξn = 0 ⇒ (
C

N
− an)ξn = 0 ,

µ̂ξ̂n = 0 ⇒ (
C

N
− ân)ξ̂n = 0 ,

β ǫ = 0 ⇒

(
C ν −

N∑

n=1

(an + ân)

)
ǫ = 0 .

Observations:

i) If ξn > 0, then an = C/N . If ξ̂n > 0, then ân = C/N .

ii) For every data point xn, either an or ân must be zero. If ν > 1, then ǫ must be zero.

iii) (# of errors)
N

≤ ν.

iv) (# of SVs)
N

≥ ν.


