
Lecture notes by Prof. Tyng-Luh Liu 1

Contents

1 Decision Tree for Classification 1

2 Decision Tree for Regression 4

3 Random Forest 6 2

1 Decision Tree for Classification

Decision Trees (1/2)

• A decision tree is a hierarchical model for supervised learning

– Implementing the divide-and-conquer strategy

– An efficient nonparametric method

• A decision tree has internal decision nodes and leaf nodes (terminal leaves)

– Each decision node m implements a test function fm(x) with discrete outcomes labeling
the branches.

– Given an input, a test is applied at a decision node, and then one of the branches is taken
depending on the outcome. This process starts at the root and is repeated recursively until
a leaf node is reached. 3

Decision Trees (2/2)

• A simple example of decision tree

4

Divide and Conquer
• Internal decision nodes

– Univariate: Uses a single attribute xi

Numeric xi: Binary split with xi > wm (i.e. fm(x))

Discrete xi: n-way split for n possible values

e.g., In the previous figure, from the root to a leaf generating splits orthogonal to each
other.

– Multivariate: Uses all attributes, x 5

1

Tree Learning (Univariate) (1/2)

• Tree induction is the construction of a (decision) tree given a training dataset.

• For a given dataset, there exist many trees that code it with no error.

We are interested in finding the smallest among them, where tree size is measured as the
number of nodes in the tree and the complexity of the decision nodes.

• However, finding the smallest tree is NP-complete.

In practice, greedy algorithms based on local search are used to yield reasonable trees in rea-
sonable time.

6

Tree Learning (Univariate) (2/2)

• Starting at the root with the complete training data, look for the best split that divides the
training data into two or n parts, depending on whether the chosen attribute is numeric or
discrete.

• The splitting is applied recursively with the corresponding subset of training data until a certain
criterion is met, at which point a leaf node is created and labeled.

7

Classification Trees (Univariate)

• The goodness of a split in a classification tree is quantified by an impurity measure.

• A split is pure if after the split, for all branches, all the instances choosing a branch belong to
the same class.

• Suppose Nm instances reaching node m, and Ni
m belong to class Ci. Then the estimate for the

probability of class Ci is given by

P̂(Ci | x,m)≡ pi
m =

Ni
m

Nm

Node m is pure ∃i such that Pi
m = 1 and P j

m = 0 for all j 6= i, and then node m is a leaf with
class label i.

8

Measure of Impurity

• One possible function to measure impurity is entropy

Im =−
K

∑
i=1

pi
m log pi

m (∗)

where 0log0≡ 0.

• In general, for 2-class classification problem, φ(p,1− p) is a nonnegative function measuring
the impurity of a split if it satisfies

1. φ(1/2,1/2)≥ φ(p,1− p) for any p ∈ [0,1]

2. φ(0,1) = φ(1,0) = 0

3. φ(p,1− p) is increasing in p ∈ [0,1/2] and decreasing in p ∈ [1/2,1]
9

2

Best Split

• If node m is pure, generate a leaf and stop, otherwise split and continue recursively

• Impurity after split: Nm j of Nm take branch j, and Ni
m j

belong to Ci

P̂(Ci | x,m, j)≡ pi
m j

=
Ni

m j

Nm j

I ′m = −
n

∑
j=1

Nm j

Nm

K

∑
i=1

pi
m j

log pi
m j

=
n

∑
j=1

Nm j

Nm
Im j (∗∗)

Im−I ′m is the information gain of the split at node m.

• Find the variable and split yielding min impurity
10

Classification Tree Construction (1/2)

• GenerateTree(X)

1. if NodeEntropy(X < θI) /* eqn. (∗) */

2. Create leaf labeled by majority class in X

3. return

4. i←− SplitAttribute(X)

5. for each branch of xi

6. Find Xi falling in branch

7. GenerateTree(Xi)
11

Classification Tree Construction (2/2)

• SplitAttribute(X)

1. MinEnt←−MAX

2. for all attributes i = 1, . . . ,d

3. if xi is discrete with n values

4. Split X into X1, . . . ,Xn by xi /* eqn. (∗∗) */

5. e←− SplitEntropy(X1, . . . ,Xn)

6. if e < MinEnt MinEnt←− e; bestf←− i

7. else

8. for all possible splits

9. split X into X1, X2 on xi

10. e←− SplitEntropy(X1,X2)

11. if e < MinEnt MinEnt←− e; bestf←− i

12. return bestf
12

3

2 Decision Tree for Regression

Regression Trees (Univariate) (1/2)

• A regression tree is constructed analogously as a classification tree, except that the impurity
measure is replaced by a measure appropriate for regression.

• Notations

– Training dataset: D = (xi,yi)
– x ∈ D reaching node m is denoted by bm(x) = 1, and 0, otherwise.
– Data reaching node m: Dm = {x ∈ D | bm(x) = 1}. Let |Dm|= Nm.

• Mean Square Error at node m:

Em =
1

Nm
∑

i
(yi−gm)2bm(xi)

where gm is the estimated value at node m. For example, we may set gm = ∑i bm(xi)yi
∑i bm(xi)

. Then Em

now becomes variance. 13

Regression Trees (Univariate) (2/2)

• If at node m, Em < θy, then a leaf node is created and it stores the gm value. Otherwise, Dm is
split further.

x ∈ D reaching node m taking branch j is denoted by

bm j(x) = 1

Dm j = {x ∈ D | bm j(x) = 1},
⋃

j
Dm j = Dm

• Mean Square Error after the split at node m:

E ′m =
1

Nm
∑

j
∑

i
(yi−gm j)

2bm j(xi)

where gm j is the estimated value in branch j of node m.

• Instead of taking average, we may use linear regression at a leaf node

gm(x) = wT
mx+wm0

14

Regression Trees: Model Selection
• The error threshold θy is the complexity parameter. When it is small,we obtain large trees and

risk overfitting; when it is large, we underfit and smooth too much.

15

4

Pruning Trees

• Remove subtrees for better generalization (decrease variance)

– Prepruning: Early stopping (at a node with too few training instances)

– Postpruning: Grow the whole tree then prune subtrees which overfit on the pruning set

• Prepruning is faster, postpruning is more accurate (requires a separate pruning set)
16

Rule Extraction from Trees

• A decision tree does its own feature extraction.

17

Multivariate Decision Trees

• In a multivariate tree, at a decision node, all input dimensions can be used. (cf. only one input
dimension is considered at each decision node of a univariate tree)

18

5

3 Random Forest

Random Forests (1/5)

• Random forests are a combination of tree predictors such that each tree depends on the values
of a random vector sampled independently and with the same distribution for all trees in the
forest.

• The generalization error of a random forest converges almost surely to a limit as the number of
trees in the forest becomes large.

• The generalization error of a random forest depends on the strength of the individual trees in
the forest and the correlation between them.

• Using a random selection of features to split each node yields error rates that compare favorably
(?) to AdaBoost, but are more robust with respect to noise.

19

Random Forests (2/5)

• Margin function: Suppose the training set is derived by drawing at random from the distribution
P of the random vectors X,Y . Given an ensemble of classifiers h1(x),h2(x), . . . ,hT (x), we
define the margin function as

margin(x,y) =
1
T

T

∑
t=1

I(ht(x) = y)−max
j 6=y

1
T

T

∑
t=1

I(ht(x) = j)

where I(·) is the indicator function.

• A random forest is a classifier consisting of a collection of tree-structured classifiers {h(x,Θt), t =
1, . . .} where the {Θt} are independent identically distributed (i.i.d.) random vectors and each
tree casts a unit vote for the most popular class at input x.

20

Random Forests (3/5)

• The generalization error is given by

err∗ = P(x,y){margin(x,y) < 0}

• As the number of trees increases, for almost surely all sequences Θ1, . . . , the generalization
error of the random forest converges to

P(x,y){PΘ(h(x,Θ) = y)−max
j 6=y

PΘ(h(x,Θ) = j) < 0}

• Indeed for random forests, an upper bound can be derived for the generalization error in terms
of two parameters that are measures of how accurate the individual classifiers are and of the
dependence between them.

21

Random Forests (4/5)

• The margin function for a random forest is

margin(x,y) = PΘ (h(x,Θ) = y)−max
j 6=y

PΘ (h(x,Θ) = j)

and the strength of the set of classifiers {h(x,Θ)} is

s = E(x,y)∼Pmargin(x,y)

6

• Assuming s≥ 0, it can be shown from Chebychev’s inequality that

err∗ ≤ var(margin(x,y))/s2

• Let ĵ(x,y) = argmax
j 6=y

PΘ(h(x,Θ) = j). We can rewrite the definition of margin function by

margin(x,y) = PΘ (h(x,Θ) = y)−max
j 6=y

PΘ (h(x,Θ) = j)

= PΘ (h(x,Θ) = y)−PΘ(h(x,Θ) = ĵ(x,y))
= EΘ[I(h(x,Θ) = y)− I(h(x,Θ) = ĵ(x,y))]

22

Random Forests (5/5)

• Define the raw margin function as

rmargin(x,y,Θ) = I(h(x,Θ) = y)− I(h(x,Θ) = ĵ(x,y))

Thus, margin(x,y) is the expectation of rmargin(x,y,Θ) with respect to Θ.

• Let ρ(Θ,Θ′) be the correlation between rmargin(x,y,Θ) and rmargin(x,y,Θ′) holding Θ,Θ′

fixed. Also denote ρ̄ as the mean value of the correlation ρ(Θ,Θ′). Then the upper bound for
the generalization error can be reduced to

err∗ ≤ ρ̄(1− s2)
s2

23

7

	Decision Tree for Classification
	Decision Tree for Regression
	Random Forest

