
Lecture notes by Prof. Tyng-Luh Liu 1

Contents

1 Boosting 1

2 Useful Notes 7

3 Boosting and Game Theory 9

4 Boosting and Logistic Regression 11

5 BH-Boost (Bhattacharyya Boost) 13

6 Boosting Algorithm as Gradient Descent 17 2

1 Boosting

Boosting: Motivation (1/2)

• Suppose we are to build an email filter that can distinguish spam (junk) emails from non-spam

1. Collect as many examples as possible of spam and non-spam emails
2. Use some machine learning approach to produce a classification or prediction rule
3. Given a new email, apply the classification rule to predict if it is a junk mail or not

• Key observations

– Building a highly accurate prediction rule is difficult
– However, it is not hard to come up with rough rules of thumb that are only moderately

accurate 3

Boosting: Motivation (2/2)

• Boosting is based on the observation that finding many rough rules of thumb can be a lot easier
than finding a single, highly accurate prediction rule

• The steps of boosting

1. Repeatedly call a base algorithm/method for finding the rules of thumb (called weak
learners in boosting)

2. Each time the base algorithm is called, with a different distribution/weighting of the train-
ing examples

3. Each time your base algorithm is called, it generates a new weak prediction rule

4. After many rounds, the boosting algorithm must combine these weak rules into a single
prediction rule

4

Boosting: Two Fundamental Issues
• How should the distribution on the training examples be chosen on each round?

– Focusing on the hardest examples

• How should the weak rules be combined into a single rule?

– Taking a (weighted) majority vote of the predictions from these weak rules
5

1

Boosting: A Brief History about Boosting

• Kearn & Valiant (1988) pose the question whether a weak learning algorithm can be boosted
into an arbitrarily accurate strong learning algorithm.

• Schapire (1989): The first provable polynomial-time boosting algorithm

• Freund & Schapire (1995): AdaBoost
(2003 Gödel prize)

6

Boosting: AdaBoost Algorithm

Given: (x1,y1), . . . ,(xm,ym), xi ∈ X and yi ∈ Y = {−1,1} Initialize the data weight distribution
D1(i) = 1/m
• For t = 1, . . . ,T

1. Call WeakLearn using distribution Dt and get back binary ht

2. Evaluate the weighted error of ht : X →{−1,+1}

εt = Pri∼Dt [ht(xi) 6= yi]

3. Choose αt = 1
2 ln
(

1−εt
εt

)
4. Update data weight

Dt+1(i) =
Dt(i)exp(−αtyiht(xi))

Zt

where Zt is a normalization factor such that Dt+1 is a distribution.

Output final classifier: H(x) = sign(f (x)) = sign
(
∑

T
t=1 αtht(x)

)
7

Boosting: Illustration

8

Boosting: Analyzing Training Error (1/5)

• The training error of the final classifier is bounded by

1
m
|{i : H(xi) 6= yi}| ≤

1
m ∑

i
exp(−yi f (xi)) =

T

∏
t=1

Zt

Since Dt+1(i) = Dt (i)exp(−αt yiht (xi))
Zt

, we have

2

T

∏
t=1

Zt =
D1(i)exp(−α1yih1(xi))

D2(i)
×·· ·× DT (i)exp(−αT yihT (xi))

DT+1(i)

=⇒DT+1(i)∏
T
t=1 Zt = D1(i)exp

(
−yi

T

∑
t=1

αtht(xi)

)

=⇒
T

∏
t=1

Zt ∑
i

DT+1(i) =
1
m ∑

i
exp(−yi f (xi))

9

Boosting: Analyzing Training Error (2/5)

• Thus the idea is to minimize the error bound

1
m
|{i : H(xi) 6= yi}| ≤

1
m ∑

i
exp(−yi f (xi)) =

T

∏
t=1

Zt

However, since AdaBoost is an iterative algorithm, we instead greedily minimize Zt at each
iteration t.

Since Dt+1(i) = Dt (i)exp(−αt yiht (xi))
Zt

and ∑i Dt+1(i) = 1, we have

Zt = ∑
i

Dt(i)exp(−αtyiht(xi))
10

Boosting: Analyzing Training Error (3/5)

• Suppose weak learner ht is chosen at iteration t. With

Zt = ∑i Dt(i)exp(−αtyiht(xi))

εt = ∑i Dt(i)1[yi 6= ht(xi)]

αt can be decided by investigating the following:

∂Zt

∂αt
= ∑i(−yiht(xi))Dt(i)exp(−αtyiht(xi))

= ∑×Dt(i)exp(αt)−∑√Dt(i)exp(−αt)

= εt × exp(αt)− (1− εt)× exp(−αt) = 0

α
∗
t =

1
2

ln
(

1− εt

εt

)
11

Boosting: Analyzing Training Error (4/5)

• With α∗t = 1
2 ln
(

1−εt
εt

)
,

Z∗t = ∑i Dt(i)exp(−α
∗
t yiht(xi))

= ∑√Dt(i)exp(−α
∗
t)+∑×Dt(i)exp(α∗t)

=
√

εt

1− εt
×∑√Dt(i)+

√
1− εt

εt
×∑×Dt(i)

=
√

εt

1− εt
× (1− εt)+

√
1− εt

εt
× εt

= 2
√

εt(1− εt)
12

3

Boosting: Analyzing Training Error (5/5)

• Let γt = 1
2 − εt . From Z∗t = 2

√
εt(1− εt), we have

T

∏
t=1

Z∗t =
T

∏
t=1

2
√

εt(1− εt)

=
T

∏
t=1

√
1−4γ2

t ≤ exp

(
−2

T

∑
t=1

γ
2
t

)
Thus, if each weak learner ht is slightly better than random then ∃γ > 0 such that γt ≥ γ > 0
for t = 1, . . . ,T . Hence

T

∏
t=1

Z∗t ≤ e−2T γ2 → 0, as T ↑

13

Boosting: Exponential Loss

• Assuming all selected weak learners ht satisfy εt < 1
2 , the ensemble classifier H is then guar-

anteed to have a lower exponential loss over the training examples.

14

Boosting: Training Error

• Assuming all selected weak learners ht satisfy εt < 1
2 , the boosting iterations also exponentially

decrease the training error.

15

4

Boosting: Training Error Bounded by Exponential Loss

• Assuming all selected weak learners ht satisfy εt < 1
2 , the boosting iterations also exponentially

decrease the training error bounded by exponential loss.

16

Boosting: Weighted Error of a Weak Learner

• Weighted error εt = ∑×Dt(i) by ht tends to be increasing with respect to boosting iterations.

17

Boosting: Typical AdaBoost Performance

• It has been observed, quite often, the test error may still go down when the training error has
already reached zero.

18

5

Boosting: Generalization Error (1/5)

• Assume training and testing samples are generated i.i.d. from some unknown distribution on
X×X .

• Also assume that all weak learners are binary.

• Generalization error here means the probability of misclassifying a new example, while the
test error is the fraction of mistakes on a newly sampled test set (i.e., generalization error is the
expected test error).

19

Boosting: Generalization Error (2/5)

• Freund and Schapire show that the generalization error, with high probability, is at most

P̂r[H(x) 6= y]+ Õ

(√
T d
m

)

d : VC-dimension of the weak learner space
T : # of boosting iterations
m : the size of training samples

20

Boosting: Generalization Error (3/5)

• For boosting, the margin of example (x,y) is defined to be

margin f (x,y) =
y f (x)
‖ f‖

=
y f (x)
∑t |αt |

=
y∑t αtht(x)

∑t |αt |
∈ [−1,+1]

• Schapire et al. show that for any θ > 0 the generalization error, with high probability, is at
most

P̂r[marginf (x,y)≤ θ]+ Õ

(√
d

mθ 2

)

Note that the above bound is now independent of T , the number of iterations of boosting.
21

Boosting: Generalization Error (4/5)

• Cumulative distribution of margin values versus the number of boosting iterations.

6

4 iterations 10 iterations
22

Boosting: Generalization Error (5/5)

• Cumulative distribution of margin values versus the number of boosting iterations.

20 iterations 50 iterations
23

2 Useful Notes

Basic Information Theory (1/6)

• The entropy H(X) of a random variable X is a measure of uncertainty of a random variable,
and is defined by

H(X) =− ∑
x∈X

p(x) log p(x), where X is the alphabet of X .

• Example:

X =
{

1 with probability p,
0 with probability 1− p.

H(X) =−p× log p− (1− p)× log(1− p)≡ H(p)

24

7

Basic Information Theory (2/6)

• The joint entropy H(X ,Y) of a pair of random variables X and Y with a joint distribution p(x,y)
is defined by

H(X ,Y) =− ∑
x∈X

∑
y∈Y

p(x,y) log p(x,y)

• The conditional entropy H(Y |X) is defined as

H(Y |X) = ∑
x∈X

p(x)H(Y |X = x)

= − ∑
x∈X

∑
y∈Y

p(x,y) log p(y|x)

• (Chain rule)

H(X ,Y) = H(X)+H(Y |X)
= H(Y)+H(X |Y)

25

Basic Information Theory (3/6)

• Example

H(X) = H
(

1
2
,

1
4
,

1
8
,

1
8

)
=

7
4

bits

H(Y) = H
(

1
4
,

1
4
,

1
4
,

1
4

)
= 2bits

H(X |Y) =
11
8

bits, H(Y |X) =
13
8

bits, H(X ,Y) =
27
8

bits

HHH
HHX

Y
1 2 3 4

1 1
8

1
16

1
32

1
32

2 1
16

1
8

1
32

1
32

3 1
16

1
16

1
16

1
16

4 1
4 0 0 0

26

Basic Information Theory (4/6)

• The relative entropy or Kullback-Leibler distance between two probability mass functions p(x)
and q(x) is defined as

D(p‖q) = ∑
x∈X

p(x) log
p(x)
q(x)

D(p‖q) is a measure of the inefficiency of assuming the distribution is q when the true distri-
bution is p.

• The mutual information between two random variables X and Y is the relative entropy between
the joint distribution p(x,y) and the product distribution p(x)p(y)

I(X ;Y) = D(p(x,y)‖p(x)p(y))

= ∑
x∈X

∑
y∈Y

p(x,y) log
p(x,y)

p(x)p(y)
27

8

Basic Information Theory (5/6)

• Mutual information I(X ;Y): a measure of the amount of information that one random variable
contains about another random variable. (i.e., the reduction in the uncertainty of one random
variable due to the knowledge of the other)

28

Basic Information Theory (6/6)

• Bhattacharyya coefficient BC(p,q) is used in a measure of the distance between two discrete
random variables with probability mass distributions p(x) and q(x), x ∈X .

BC(p,q) = ∑
x∈X

√
p(x)q(x)

BC(p,q)→ 1⇔ p and q are more “similarly” distributed.
29

3 Boosting and Game Theory

Game Theory: Two-Person Zero-Sum Games (1/5)

• Two-person zero-sum games: games with only two players where one player wins what the
other player loses.

• The strategic form of a two-person zero-sum game is given by a triplet (X ,Y,A)

1. X is a nonempty set, the set of strategies of Player I (the row player)

2. Y is a nonempty set, the set of strategies of Player II (the column player)

3. A is a real-valued function defined on X×Y

Player I chooses some x ∈ X and Player II chooses y ∈ Y . A(x,y) represents the winnings of I
and the losses of II. (can be positive or negative) 30

Game Theory: Two-Person Zero-Sum Games (2/5)

• A two-person zero-sum game (X ,Y,A) is said to be a finite game if both X and Y are finite sets.

• The Minmax Theorem

For every finite two-person zero-sum game,

1. There is a number V , called the value of the game

2. There is a mixed strategy for Player I such that I’s average gain is at least V no matter
what II does

3. There is a mixed strategy for Player II such that II’s average loss is at most V no matter
what I does. 31

9

Game Theory: Two-Person Zero-Sum Games (3/5)

• Example: (Odd or Even) Players I and II simultaneously call out one of the numbers one or
two.

If the sum of the two numbers is odd, Player I wins the same amount of reward. Otherwise,
Player II wins.

Player II (even)
y ∈ Y = {1,2}

1 2
Player I (odd) 1
x ∈ X = {1,2} 2

(
−2 +3
+3 −4

)
• Let p be the portion of times Player I calls one.

−2p+3(1− p) Player II calls one
3p−4(1− p) Player II calls two

}
p = 7

12 for Player I to call one is
the optimal strategy of Player I

Note that
(
−2× 7

12 +3× 5
12

)
= 1

12 is the value of the game. 32

Game Theory: Two-Person Zero-Sum Games (4/5)

• A finite two-person zero-sum game in strategy form, (X ,Y,A), is sometimes called a matrix
game because the payoff function can be represented as a matrix.

If X = {x1, . . . ,xm} and Y = {y1, . . . ,yn}, then by the game matrix or payoff matrix we mean
the matrix

A =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 where ai j = A(xi,y j)

• A mixed strategy for Player I may be represented by an m-tuple, p = (p1, p2, . . . , pm) of proba-
bilities that add to 1. If I uses the mixed strategy p and II chooses column j, then the (average)
payoff to I is ∑

m
i=1 piai j.

On the other hand, if II uses q = (q1,q2, . . . ,qn) and I uses row i, the payoff to I is ∑
n
j=1 ai jq j.

33

Game Theory: Two-Person Zero-Sum Games (5/5)

• A finite two-person zero-sum game in strategy form, (X ,Y,A), is sometimes called a matrix
game because the payoff function can be represented as a matrix.

If X = {x1, . . . ,xm} and Y = {y1, . . . ,yn}, then by the game matrix or payoff matrix we mean
the matrix

A =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 where ai j = A(xi,y j)

• More generally, if I uses the mixed strategy p and II uses the mixed strategy q, the (average)
payoff to I is

pT Aq =
m

∑
i=1

n

∑
j=1

piai jq j

34

10

Pronounced differences: Story of a romance, from model to muddle
She pronounced “a Tupple”, he said always “Toople”,
But both knew that in life one has to be supple.
Before long they huddled while browsing Google or watching Ted Koppel,
And all thought there wasn’t more perfect a couple.
He was from just Seattle, her folks straight from the Shtetl,
Yet their love — so it seemed — could suffer not even a ripple,
For he kept to the rule: be nimble, don’t ogle her nipple,
And don’t ever discuss the phonemes of “Tuple”.
Each morning they parted for the city bustle,
He walking the poodle, she coding in Eiffel at Apple;
Alas! Nights at home saw the fights redouble
When she brought up tupples and he cried “It’s Tooooople!”.
From splits most subtle, a marriage can topple:
First rabble, then rubble, theirs soon wasn’t worth a ruble.
She stuck hard to Tupple, he pushed still for Toople;
Two tickets to Reno corrected the trouble.

— quoted from Journal of Object Technology, 2003

35

Boosting as Two-Person Zero-Sum Games

• Instead of working with a payoff matrix A, we now consider a loss matrix M, again, of the row
player.

• Boosting with training samples {(x1,y1), . . . ,(xm,ym)} and a set of binary weak classifiers
H = {h1, . . . ,hn} can be viewed as repeated play of the game matrix Mm×n where

Mi j =

{
1 if h j(xi) = yi

0 otherwise.

• The row player is the boosting algorithm: to decide a distribution Dt over {(x1,y1), . . . ,(xm,ym)}
becomes a distribution P over rows of M, while the base learner’s choice of of a weak classifier
ht becomes the choice of a column j of M.

von Neumann’s Minimax Theorem
max

Q
min

P
PT MQ = min

P
max

Q
PT MQ

36

4 Boosting and Logistic Regression

Boosting and Logistic Regression (1/5)

• For estimating the probability of a label, Friedman et al. suggest using a logistic function, and
estimating

P(y = 1|x) =
e f (x)

e f (x) + e− f (x) =
1

1+ e−2 f (x) (∗)

• Note 1

E
{

e−y f (x)
}

is minimized at f (x) = 1
2 ln p(y=1|x)

p(y=−1|x) .

P(y = 1|x) =
e f (x)

e f (x) + e− f (x) , P(y =−1|x) =
e− f (x)

e f (x) + e− f (x)

11

Proof

E
{

e−y f (x)
}

= P(y = 1|x)e− f (x) +P(y =−1|x)e f (x)

∂E
{

e−y f (x)
}

∂ f (x)
=−P(y = 1|x)e− f (x) +P(y =−1|x)e f (x) = 0

37

Boosting and Logistic Regression (2/5)

• Note 2

Data likelihood is
∏

yi=+1
p(yi = 1 | xi) ∏

yi=−1
p(yi =−1 | xi)

log loss = negative log likelihood

= − ln

(
∏

yi=+1

1
1+ e−2 f (xi) ∏

yi=−1

1
1+ e2 f (xi)

)
= ∑

yi=+1
ln
(

1+ e−2 f (xi)
)

+ ∑
yi=−1

ln
(

1+ e2 f (xi)
)

=
m

∑
i=1

ln
(

1+ e−2yi f (xi)
)

38

Boosting and Logistic Regression (3/5)

• Note 3

E
{

ln
(

1+ e−2y f (x)
)}

is minimized at f (x) = 1
2 ln p(y=1|x)

p(y=−1|x)

proof

E
{

ln
(

1+ e−2y f (x)
)}

= P(y = 1|x) ln
(

1+ e−2 f (x)
)

+P(y =−1|x) ln
(

1+ e2 f (x)
)

The claim will follow by evaluating

∂E
{

ln
(

1+ e−2y f (x)
)}

∂ f (x)
= 0

39

Boosting and Logistic Regression (4/5)

• Note 4

ln
(

1+ e−2y f (x)
)

and e−y f (x) have identical Taylor expansions around f = 0 up to second order.

More details:

ln
(

1+ e−2y f (x)
)

= ln2− y f (x)+
y2

2
f 2(x)+ · · ·

e−y f (x) = 1− y f (x)+
y2

2
f 2(x)+ · · ·

Conclusion:

Minimizing ∑i e−yi f (xi), as is done by AdaBoost, can be viewed as a method of approximately
minimizing the negative log likelihood. Thus we may expect equation (∗) to give a reasonable
probability estimate. 40

12

Boosting and Logistic Regression (5/5)

• Note 5

Indeed it can be shown that log loss is upper bounded by exponential loss

m

∑
i=1

ln
(

1+ e−2yi f (xi)
)
≤

m

∑
i=1

e−yi f (xi)

41

5 BH-Boost (Bhattacharyya Boost)

BHBoost: Introduction

• BHBoost (Lin et al., ECCV-2004) The main idea is to use efficient weak learners by analyzing
1-D projections of training samples.

• Notations

S = {(xi,yi)}m
i=1 = {(xi,yi) | yi = 1}

⋃
{(xi,yi) | yi =−1}

= S+
⋃

S− (two-class labeled training samples)

Φ = {φ j}n
j=1 (a set of n possible 1-D projections)

Range(Φ) = {bk}B
k=1

(range of projected real values is divided into B bins)
42

Naive Weak Learners

• Example

A classification function (weak learner) can be formed by a rectangle feature.

A classification function h consists of a rectangle feature f , a threshold θ of f , and polarity p,
i.e.,

h(x) =

 1 if p f (x)≥ pθ

−1 otherwise

where x is a 24×24 image
43

What Could Be Wrong?

44

13

What Could Be Wrong?

45

What Could Be Wrong?

46

What Could Be Wrong?

47

What Could Be Wrong?

14

48

Two Weighted Histograms

• φ : rectangle feature/projection direction

ik(φ) = {i|xi ∈ S,φ(xi) ∈ bk}

i+k (φ) = {i|xi ∈ S+,φ(xi) ∈ bk}

i−k (φ) = {i|xi ∈ S−,φ(xi) ∈ bk}

Positive weighted histogram: p+
k (φ) = ∑i+k (φ) D(i)

Negative weighted histogram: p−k (φ) = ∑i−k (φ) D(i)
49

AdaBoost Error Bound: Revisited

• Data
{(x1,y1),(x2,y2), . . . ,(xm,ym)}

• Classifier

H(x) = sign(f (x)) = sign

(
T

∑
t=1

αtht(x)

)
• Error bound

1
m

m

∑
i=1

1
2
|yi−H(xi)| ≤

1
m

m

∑
i=1

exp(−yi f (xi)) =
T

∏
t=1

Zt

where Zt = ∑
m
i=1 Dt(i)exp(−αtyiht(xi))

50

Projection & Weak Learners

• Each projection φ results in a weak learner hφ

For each φ define hφ by hφ (x) = sk if φ(x) ∈ bk
It follows that

Z =
m

∑
i=1

D(i)exp(−αyih(xi)) =
B

∑
k=1

∑
ik(φ)

D(i)exp(−αyisk)

15

dZ
dsk

= 0

=⇒ ∑
ik(φ)

(−αyi)D(i)exp(−αyisk) = 0

=⇒ − ∑
i+k (φ)

αD(i)exp(−αsk)+ ∑
i−k (φ)

αD(i)exp(αsk) = 0

=⇒ exp(−αsk)p+
k (φ) = exp(αsk)p−k (φ)

=⇒ sk =
1
α

ln

√
p+

k (φ)
p−k (φ)

51

Bhattacharyya Weak Learner

• How to measure the goodness of hφ

Z = ∑
B
k=1 ∑

ik(φ)
D(i)exp(−αyisk)

= ∑
B
k=1 ∑

ik(φ)
D(i)exp

(
−αyi

1
α

ln
√

p+
k (φ)/p−k (φ)

)
= ∑

B
k=1

[
∑i+k (φ) D(i)exp

(
− ln

√
p+

k (φ)/p−k (φ)
)

+ ∑i−k (φ) D(i)exp
(

ln
√

p+
k (φ)/p−k (φ)

)]
= ∑

B
k=1

[
p+

k (φ)
√

p−k (φ)/p+
k (φ)× p−k (φ)

√
p+

k (φ)/p−k (φ)
]

= 2∑
B
k=1

√
p+

k (φ)p−k (φ) (Bhattacharyya Coefficient)

52

BHBoost Algorithm

• Given: (x1,y1), . . . ,(xm,ym), xi ∈ X and yi ∈ Y = {−1,1}

Initialize the data weight distribution D1(i) = 1/m

For t = 1, . . . ,T

1. Call BH-WeakLearn using distribution Dt

2. Find ht : X → R with minimum BC

3. Update data weight:

Dt+1(i) =
Dt(i)exp(−yiht(xi))

Zt

where Zt is a normalization factor such that Dt+1 is a distribution

Output the final BH-classifier:

H(x) = sign(f (x)) = sign

(
T

∑
t=1

ht(x)

)
53

16

6 Boosting Algorithm as Gradient Descent

Boosting Algorithm as Gradient Descent: Notations
• Assume that training data S = {(xi,yi)}m

i=1 are randomly generated from some unknown prob-
ability distribution D on X×Y .

We consider voted combination of (weak) classifiers of the following form:

H(x) = sign(f (x)) = sign

(
T

∑
t=1

αtht(x)

)
where ht : X →{±1}.

54

Optimizing Margin-based Cost Functions
• The (functional) margin of an example (x,y) with respect to the classifier H is defined as y f (x).

We aim to construct f such that the probability H misclassifies an example is low.

• The idea is to minimize the sample average of some cost function of the margin.

That is, for a training set S, we want to find f such that cost functional

C(f) =
1
m

m

∑
i=1

C(yi f (xi))

is minimized for some suitable cost function C : R→ R. 55

AnyBoost: The Idea (1/2)

• At an abstract level, we can view the binary weak (or base) hypotheses h ∈ H and their
combinations f as elements of an inner product space (X ,〈,〉).

S is then a linear space of functions that contains lin(H), the set of all linear combinations of
functions in H . And the inner product is defined by

〈 f ,g〉= 1
m

m

∑
i=1

f (xi)g(xi)

for all f ,g ∈ lin(H).

• That is, with training set S, a function f can be thought as the following vector in the inner
product space:

f ⇐⇒ 〈 f (x1), . . . , f (xm)〉.
56

AnyBoost: The Idea (2/2)

• Suppose function f ∈ lin(H) and we wish to find a new h ∈H to add to f such that cost
C(f + εh) decreases.

• The idea is to choose h such that C(f + εh) most rapidly decreases.

However, since the choice of h is limited to the set H , it may not be possible to have h =
−∇C(f). Instead we choose h maximizing −〈∇C(f),h〉

From C(f) = 1
m ∑

m
i=1 yi f (xi), we denote fi = f (xi) and write C(f) as C(f1, f2, . . . , fm).

Thus

∇C(f) =
(

∂C
∂ f1

, . . . ,
∂C
∂ fm

)
=

1
m
〈y1C′, . . . ,ymC′〉

−〈∇C(f),h〉 = − 1
m2

m

∑
i=1

yih(xi)C′(yi f (xi))

57

17

AnyBoost: Algorithm

• Input

– A class of base (weak) classifiers H ⊆X .

– A differentiable cost functional C : lin(H)→ R.

– Call WeakLearn(f) will return h ∈H with a large value of −〈∇C(f),h〉

• Algorithm

1. f0 = 0

2. for t := 0 to T do
3. ht+1←WeakLearn(ft = ∑

t
τ=1 ατ hτ)

4. if −〈∇C(ft),ht+1〉 ≤ 0 then return f ← ft
5. Choose αt+1

6. ft+1 := ft +αt+1ht+1

7. end for
8. return f ← ft+1

58

Gradient Descent and Voting Methods (1/2)

• Consider the inner product:

−〈∇C(f),h〉=− 1
m2

m

∑
i=1

yih(xi)C′(yi f (xi))

• A reasonable cost function of the margin should be monotonically decreasing, i.e.,−C′(yi f (xi))>
0.

Let

D(i) =
C′(yi f (xi))

− 1
m2 ∑

m
i=1 C′(yi f (xi))

for i = 1, . . . ,m.

max
h
−〈∇C(f),h〉 ⇐⇒min

h
∑

i:h(xi)6=yi

D(i)

59

Gradient Descent and Voting Methods (2/2)

• Theorem Let C : lin(H)→R be a bounded, Lipschitz differentiable cost functional. (That is,
∃L > 0 such that ‖∇C(f)−∇C(f ′)‖ ≤ L‖ f − f ′‖ for all f , f ′ ∈ lin(H).) Let f0, f1, . . . , be the
sequence of combined hypotheses generated by the AnyBoost algorithm, using step-sizes

αt+1 :=−〈∇C(ft),ht+1〉
L‖ht+1‖2 .

Then AnyBoost algorithm either halts on round T with −〈∇C(fT),hT+1〉 ≤ 0 or C(ft) con-
verges to some finite value C∗, in which case limt→∞〈∇C(ft),ht+1〉= 0.

60

18

	Boosting
	Useful Notes
	Boosting and Game Theory
	Boosting and Logistic Regression
	BH-Boost (Bhattacharyya Boost)
	Boosting Algorithm as Gradient Descent

