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ABSTRACT

This paper presents a fast algorithm for deriving the defo-
cus map from a single image. Existing methods of defo-
cus map estimation often include a pixel-level propagation
step to spread the measured sparse defocus cues over the
whole image. Since the pixel-level propagation step is time-
consuming, we develop an effective method to obtain the
whole-image defocus blur using oversegmentation and trans-
ductive inference. Oversegmentation produces the superpix-
els and hence greatly reduces the computation costs for sub-
sequent procedures. Transductive inference provides a way to
calculate the similarity between superpixels, and thus helps
to infer the defocus blur of each superpixel from all other
superpixels. The experimental results show that our method
is efficient and able to estimate a plausible superpixel-level
defocus map from a given single image.

Index Terms— Defocus estimation

1. INTRODUCTION

Common causes of image blur include camera shake [7, 17],
object motion [4, 9, 17], and defocus [2, 6, 8, 10, 11, 15,
16, 17, 19, 20]. In this paper, we aim to study the problem
of defocus blur, which provides important clues for estimat-
ing relative depths. Defocus maps are also useful for image
manipulation. For example, refocus, segmentation, matting,
background decolorization, and salient region detection are
just some of the possible applications [8, 12, 13, 14].

A 3D point captured in an image will look sharp if it lo-
cates on the focal plane, because the rays from this point will
converge to the same spot on the camera sensor. In contrast,
a 3D point will look blur in the image if it deviates from the
focal plane. This kind of blur is called the defocus blur. The
blur pattern on the sensor is called the circle of confusion.
The diameter c of the circle of confusion is proportional to
the distance from the 3D point to the focal plane. This means
the diameter of the circle of confusion, the distance from the
3D point to the focal plane, and the degree of blur are posi-
tively correlated.

The defocus blur is usually estimated around the edge pix-
els. The resulting estimate thus yields a sparse defocus map.
Therefore, a subsequent propagation step is needed to spread
out the sparse defocus values to the entire image. However,
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Fig. 1. An example of defocus map estimation. (a) In-
put image. This image is downloaded from flickr.com
(https://goo.gl/RZb9wl). (b) The estimated superpixel-level
defocus map. Note that brighter intensity values correspond
to greater degrees of defocus.

we observe that the existing methods usually spend a lot of
time on the propagation step, and this will limit the useful-
ness of defocus blur estimation. The excessively large com-
putational cost on the propagation step motivates us to explore
a faster strategy for propagating the sparse defocus map.

1.1. Related Work

The literature on defocus blur estimation can be roughly di-
vided into two categories: gradient based methods and fre-
quency based methods.

Gradient based methods [2, 6, 8, 10, 11, 16, 20] exploit
the fact that the gradient magnitudes at the edge locations de-
cline sharply after blurring. Elder and Zucker [6] propose
to measure image blur using the first and second order gra-
dients on edges, and hence generate a sparse defocus map.
Bae and Durand [2] use a multi-scale edge detector to esti-
mate the blur of edge pixels, and then propagate the blur cues
over the image by an edge-aware colorization method. Nam-
boodiri and Chaudhuri [10] model the defocus blur as a heat
diffusion process. They estimate the defocus blur at edge lo-
cations according to the inhomogeneous inversion heat diffu-
sion, and then propagate the defocus blur using graph-cuts.
Tai and Brown [16] use local contrast prior on edge gradient
magnitudes to define the amount of defocus blur. Then, they
adopt MRF propagation to obtain the dense defocus map. The
method of Zhuo and Sim [20] is based on the response of the



Fig. 2. The flowchart of the proposed method. Edge detection: The result of the structured edge prediction. Defocus blur cal-
culation: The estimated sparse defocus map. Oversegmentation: The result of SLIC oversegmentation. Transductive inference:
To transform a weight matrix W into an affinity matrix A. Defocus blur propagation: To propagate the sparse defocus map in
superpixel-level based on the affinity matrix Â.

Gaussian blur on edge pixels for characterizing defocus blur.
The matting Laplacian technique is used to interpolate the de-
focus blur of non-edge pixels. Jiang et al. [8] measure the
pixel-level defocus blur with multiple Gaussian kernels. They
directly define the region-level defocus blur of each region by
the pixel-level blur values on the region boundary and edge
pixels. Recently, Peng et al. [11] estimate the pixel blur using
the difference between the before and after multi-scale Gaus-
sian smoothing. They employ morphological reconstruction
and the guided filter for blur map refinement.

Frequency based methods [15, 17, 19] draw upon the
observation that blurring decreases high frequency compo-
nents and increases low frequency components. For exam-
ple, Zhang and Hirakawa [17] use double discrete wavelet
transform to estimate defocus blur. Zhu et al. [19] mea-
sure the probability of blur scale via the localized Fourier
spectrum. The blur scale of each pixel is then selected by
a constrained pairwise energy function. Shi et al. [15] esti-
mate the small defocus blur via the statistics of sparse just
noticeable blur features. The result is further smoothed with
an edge-preserving filter.

1.2. Our approach

In general, the aforementioned gradient based defocus esti-
mation methods contain two phases. The first phase gener-
ates the sparse defocus blur estimation at edge locations. The
second phase propagates the estimated sparse defocus blur to
the entire image. The existing methods usually take too much
time in the second phase. However, the pixel-level defocus
information is not always required in practical applications,
for example foreground/background segmentation and salient
region detection. Therefore, instead of using graph-cuts, col-
onization, or matting Laplacian methods for pixel-level defo-
cus propagation as in the previous work, we integrate over-
segmentation and transductive inference to achieve highly ef-
ficient propagation at the superpixel level.

2. DEFOCUS BLUR ESTIMATION

Our method includes two phases, namely the sparse defocus
blur estimation and the defocus blur propagation. The first
phase aims to estimate the defocus blur on the edge pixels,
and we adopt the gradient based approach in this phase. The
second phase incorporates a new mechanism to propagate the
sparse defocus blur to the whole image.

2.1. Sparse defocus blur estimation

2.1.1. Edge detection

Since the defocus blur is measured at the edge locations, we
first apply edge detector to the image and extract the set E of
edge pixels. We adopt Canny edge detector [3] and the struc-
tured edge prediction [5] for their efficiency and performance.
The results from both methods are shown in the experiments.

2.1.2. Defocus blur calculation

Consider an edge function e(x) = αh(x)+β, where α and β
denote the amplitude and the offset of the edge respectively,
h(·) denotes the step function, and x is a pixel location. The
defocus blur can be modeled as a convolution of an edge pixel
x with a Gaussian kernel g(x, σ), where the standard devia-
tion σ is proportional to the circle of confusion diameter c.
The blurred edge is thus defined as b(x) = e(x) ⊗ g(x, σ).
The unknown standard deviation σ means the blurriness on
the edge pixel and can be used to represent the degree of de-
focus blur on that edge pixel.

If we re-blur the edge pixel using another Gaussian kernel,
then the gradient of the re-blurred edge is represented as

∇(b(x)⊗ g(x, σr)) = ∇(e(x)⊗ g(x, σ)⊗ g(x, σr))
= α√

2π(σ2+σ2
r)

exp(− x2

2(σ2+σ2
r) ) ,

(1)



where σr denotes the standard deviation of the re-blur Gaus-
sian kernel. Zhuo and Sim [20] observe that the gradient mag-
nitude ratio R between the original blurred edge and the re-
blurred edge has maximum value at the edge locations. Fur-
thermore, the maximum value is given by

R =
|∇b(x)|

|∇b(x)⊗ g(x, σr)|
=

√
σ2 + σ2

r

σ2
. (2)

Hence, we can calculate the unknown blur σ using the gradi-
ent magnitude ratio R at the edge locations by

σ =
σr√
R2 − 1

, (3)

where σr is known and R can be derived from gradient mag-
nitudes. Note that Eq. (3) is only applicable to the edge loca-
tions. Therefore, the intermediate outcome at the current step
is just a sparse defocus map on edge pixels, as shown in the
defocus blur calculation block in Fig. 2.

2.2. Defocus blur propagation

2.2.1. Oversegmentation

The goal of this step is to create the basic units (superpixels),
and to define the similarity between the adjacent superpixels.
Given an image, we first use the SLIC algorithm [1] to over-
segment the image into a superpixel set S = {s1, s2, ..., sN}.
According to the superpixel set S, we define a weighted con-
nected graph G = (S, E , ω), where the vertex set is the super-
pixel set S and the edge set E contains pairs of every two ad-
jacent superpixels. That is, each vertex si denotes one single
superpixel in S, and each edge eij ∈ E denotes the adjacency
relationship between superpixels si and sj . The weight func-
tion ω : E → [0, 1] defines the corresponding weight ωij to
each edge eij , expressed in terms of feature similarities. We
can thus define the weight matrix as W = [ωpq]N×N .

2.2.2. Transductive inference

The above weight matrix W describes the similarity between
any two adjacent superpixels. According to the transductive
inference method proposed by Zhou et al. [18], we can ob-
tain an N -by-N affinity matrix A to describe the transductive
similarity between any two superpixels, no matter they are
adjacent or not. The affinity matrix A can be defined by

A = (D − γW )−1I , (4)

whereD is the diagonal matrix with each diagonal entry equal
to the row sum of W , γ is a parameter in (0, 1), and I is the
N -by-N identity matrix. Since the affinity matrix encodes
the transductive similarity between any two superpixels, it is
possible to adjust the defocus blur of any superpixel pair using
their affinity in A.

2.2.3. Defocus blur propagation

For each superpixel si, we define its initial defocus blur fsi

as
fsi

= median
x∈Ei

{fx} , (5)

where Ei denotes the set of the interior edge pixels of the
superpixel si. The defocus blur fx on edge pixel x is com-
puted using Eq. (3). Here we use the median to reduce the
impact from the outliers. Now, take the affinity information
into account, the propagated defocus blur f̂si of superpixel si
is defined as

f̂si
= Â · [fs1 , fs2 , . . . , fsN

]T , (6)

where Â = [aij ]N×N denotes the modified affinity matrix
with two conditions: i) column j is reset to zeros if Ej is
empty; ii) each row is summed to one. The Eq. (6) means
that the defocus blur of each superpixel is derived from not
only its neighboring superpixels but also all other superpixels
except the superpixels contain no edge pixels. An example of
the final defocus map is shown in Fig. 2.

We summarize the steps of the proposed defocus blur es-
timation:

1. Edge detection: Detect edge pixels using Canny edge
detector [3] or structured edge prediction [5].

2. Defocus blur calculation: Apply Eq. (2) and Eq. (3) to
the edge pixels and generate the sparse defocus map.

3. Oversegmentation: Oversegment the image using SLIC
[1] and construct the weight matrix W .

4. Transductive inference: Calculate the affinity matrix A
by Eq. (4).

5. Defocus blur propagation: Use Eq. (5) and Eq. (6) to
re-estimate the defocus blur of each superpixel.

3. EXPERIMENTAL RESULTS

We compare the proposed superpixel-level defocus blur esti-
mation with some of the state-of-the-art methods. The eval-
uations are performed with respect to the execution time and
visualization results. We use the blurry images from [20] and
[8] for the experiments. There are five images in [20] and
seven images in [8].

In this work, we set the number of superpixels N = 200
and the parameter γ = 0.9999 in Eq.(4). We calculate the
weight matrix using the Y CbCr color features and Gaussian
weighting function.

3.1. Execution Time Comparison

Fig. 3 shows that our method is about 5 to 13 times faster than
previous methods. Fig. 3 also reveals the time-consuming



Fig. 3. Execution time comparison of our approach with other
methods. The references of the diagram legends are Zhuo
[20], Jiang [8], Shi [15], and our approach, respectively. Shi-
1 and Shi-2 represent the case-1 and case-2 results of their
released code. Our-C and Our-S represent the adopted edge
detectors with Canny [3] or structured [5].

problem of pixel-level defocus estimation on large images.
In general, the computation time of our method to process a
500×500 image is less than 1 second on an Intel Core i5-2500
CPU running at 3.30 GHz.

3.2. Visual Comparison

Fig. 4 shows the estimated defocus maps of different meth-
ods. For better visualization, we normalize the estimated de-
focus blur of all methods to the range of [0, 1]. The higher
(brighter) intensity values represent the stronger defocus blur.
With superpixel-level defocus blur propagation, superpixels
that contain similar features could obtain similar defocus blur
values. It can be seen that our defocus blur estimation is able
to produce visually plausible defocus maps, and furthermore,
the estimated defocus maps are readily usable for salient re-
gion detection or foreground/background segmentation.

4. CONCLUSION

We have shown that the proposed method can greatly speed
up the propagation step of the gradient based defocus blur es-
timation. With the aids of the techniques from oversegmenta-
tion and transductive inference, the defocus blur propagation
step becomes much more efficient. The experimental results
show that our method for estimating superpixel-level defocus
maps performs well in visualization results and computation
time.

Fig. 4. Visual comparison of our approach with other meth-
ods. The top five test images are from [20] and the bottom
seven images are from [8]. We normalize the estimated de-
focus blur of all methods to the range of [0, 1]. The higher
(brighter) intensity values represent the stronger blur. The
columns from left to right are source images, our results with
Canny edge detector, our results with structured edge predic-
tion, the results using Zhuo and Sim [20], the results of Jiang
[8], and the results of case-1 and case-2 of Shi [15].
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