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ABSTRACT

This paper presents a new algorithm to solve the problem of

co-saliency detection, i.e., to find the common salient objects

that are present in both of a pair of input images. Unlike most

previous approaches, which require correspondence match-

ing, we seek to solve the problem of co-saliency detection

under a preattentive scheme. Our algorithm does not need to

perform the correspondence matching between the two input

images, and is able to achieve co-saliency detection before the

focused attention occurs. The joint information provided by

the image pair enables our algorithm to inhibit the responses

of other salient objects that appear in just one of the images.

Through experiments we show that our algorithm is effective

in localizing the co-salient objects inside input image pairs.

Index Terms— Saliency Detection

1. INTRODUCTION

Detecting salient or irregular objects in images can be con-

sidered as a fast pre-processing step for image analysis, and

has been shown to be useful in various applications, for ex-

ample, human detection [1], defect detection [2], data visual-

ization [3], texture segmentation [4], and visual tracking [5].

Despite the importance and benefit of saliency detection, the

problem itself is not well defined, and the validity of a solu-

tion to the problem is not easy to evaluate or justify. Gener-

ally, the likeliness of an image region being salient or not may

depend on the context in the image. Saliency detection could

be made more specific if we introduce additional information.

In this paper we address the problem of co-saliency detection:

Given a pair of input images, we are asked to find the com-

mon salient object that appears in both images. Such prob-

lems might be solved using some unsupervised algorithms to

find automatically the common parts among all possible cor-

respondences between two candidate sets, e.g. [6], [7], [8],

[9]. Besides co-saliency detection, similar settings that take

a pair of images as the input have also been employed in ob-

ject recognition (co-recognition [10]) and image segmenta-

tion (co-segmentation [11]).

Previous approaches to the co-saliency detection prob-

lem usually try to detect local features (e.g. SIFT [12]) first,

and then perform partial matching between the two sets

of features. Unlike previous approaches, we seek to solve

the problem of co-saliency detection under a preattentive

scheme [3], [13]. Since co-saliency detection can be consid-

ered as a pre-processing step for other applications, the com-

putation of co-saliency should be made simple and should be

performed before focused attention occurs. The advantage

of the proposed algorithm is that it does not need to perform

feature matching between the two input images. Further-

more, the computation of our algorithm is straightforward

and can be done before focused attention. The experimental

results show that our algorithm is effective in singling out the

common salient object inside a pair of input images, from

many otherwise equally-likely salient objects if only one

input image is given.

2. A PROGRESSIVE ALGORITHM FOR

PREATTENTIVE CO-SALIENCY DETECTION

To achieve the goal of co-saliency detection, we employ a

distribution-based representation that characterizes the sparse

features in an image. Based on the feature distributions of

a pair of images, we present a progressive algorithm to en-

hance preattentive responses and can thus identify the com-

mon salient objects in both images.

2.1. Sparse Features

We use the sparse feature representation proposed by Hou and

Zhang [14] to characterize the input images. A set of ba-

sis functions are learned from natural image patches. Totally

120, 000 RGB natural image patches are used for learning the

basis functions. The size of an RGB image patch is 8×8 pix-

els. To model the 8× 8 RGB image space, 192(= 8× 8× 3)
basis functions are learned, as shown in Fig. 1. Let Φ denote

the matrix representation of the set of basis functions, where

each column of Φ corresponds to a component of the basis.

With the set of basis functions, an input RGB image patch x

can be expressed as a linear combination of the basis func-

tions, i.e., x = Φα. The combination coefficients α can be

obtained by α = Φ−1x, where each row vector of Φ−1 acts

as a filter applied to the RGB image patch. Let K = Φ−1, and

therefore α can be viewed as the responses to the filter bank



Fig. 1. Sparse feature representation: the 192 basis functions

Φ for 8× 8 RGB natural image patches [14].

K of 192 filters. For the convenience of later discussion, we

denote the ith row vector of K by kT

i .

2.2. Building Feature Distributions from Filter Responses

Given a pair of images I1 and I2, we can extract the 8 × 8
image patch at each position inside the images, and obtain

two sets of image patches X = {x(1),x(2), . . . ,x(n), . . .} and

Y = {y(1),y(2), . . . ,y(n), . . .} , with respect to I1 and I2. In

addition, each image patch x(n) is associated with a saliency

weight βn and each image patch y(n) is associated with γn.

Initially we have βn = 1 and γn = 1 for all n.

As in [14], we also apply the filter bank K to the image

patches, and compute the absolute values of filter responses.

For each filter ki, we add the absolute responses of the image

patches {x(n)} that satisfy βn > θ, where θ ∈ (0, 1) is a

predefined threshold. Then, for the ith feature we derive a

normalized value

pi =

∑

{n|βn>θ} |k
T

i x(n)|
∑

j

∑

{n|βn>θ} |k
T

j x(n)|
. (1)

We collect the normalized absolute responses and obtain a

feature distribution p = [p1, p2, . . .]
T for image I1. Similarly,

we may build the feature distribution q = [q1, q2, . . .]
T from

Y for image I2, where

qi =

∑

{n|γn>θ} |k
T

i y(n)|
∑

j

∑

{n|γn>θ} |k
T

j y(n)|
. (2)

2.3. A Progressive Algorithm

We may compare the distribution p with the distribution q by

the Kullback-Leibler divergence

KL(p||q) =
∑

i

pi log
pi

qi
. (3)

Note that the Kullback-Leibler divergence is asymmetric.

To detect co-salient regions, we will need to compute both

KL(p||q) and KL(q||p). Furthermore, it is easy to see that

KL(p||q) ≥ 0 and KL(q||p) ≥ 0, and the equalities hold if

p and q are identical.

If the co-salient objects within the two images are found,

we expect that the Kullback-Leibler divergence between p

and q will be small. We compute the derivatives of KL(p||q)
with respect to pi and the derivatives of KL(q||p) with re-

spect to qi, and we try to figure out which features are more

important to the minimization of the Kullback-Leibler diver-

gence. For brevity’s sake, we only list the equations for p.

The corresponding equations for q can be derived likewise.

The derivative ∂
∂pi

KL(p||q) is given by

∂

∂pi
KL(p||q) =

∂

∂pi

∑

j

(pj log pj − pj log qj)

= pi + log pi + pi log pi − log qi − pi log qi −KL(p||q) .

(4)

Note that
∑

i pi = 1 should be taken into account. Since

we are only interested in the features that cause a decrease

of the Kullback-Leibler divergence, we take the negation of

the derivatives and ignore those unimportant features. More

specifically, we compute

δKL(pi;p||q) = max

(

−
∂

∂pi
KL(p||q), 0

)

. (5)

Based on δKL(pi;p||q) and δKL(qi;q||p) we update the

saliency weights βn and γn by

βn =

∑

i δKL(pi;p||q)
∣

∣kT

i x(n)
∣

∣

∑

i δKL(pi;p||q)
, (6)

and

γn =

∑

i δKL(qi;q||p)
∣

∣kT

i y(n)
∣

∣

∑

i δKL(qi;q||p)
. (7)

for all image patches in X and Y .

With the new saliency weights βn and γn, we recompute

p and q using Eqs. (1) and (2). We then repeat the previous

process and keep updating βn and γn for several iterations. In

our experiments we run the algorithm for 15 iterations, and,

as a result, the saliency weights will reflect the locations of

the co-salient objects within the two input images.

3. EXPERIMENTAL RESULTS

Given a pair of input images, our algorithm is able to find

the regions of the common salient object appearing in both

images. In the experiments the input images are all down-

sampled to 80 × 120 pixels. We extract every 8 × 8 RGB

image patch from the input images, and use our algorithm to

compute the saliency weights βn and γn for each patch x(n)

and y(n). The saliency weights can be spatially aggregated

into saliency maps for visualization. We compare our results

with those generated by the Incremental Coding Length (ICL)

algorithm [14]. The ICL algorithm takes only a single input

image, and it identifies salient regions that correspond to sel-

dom activated features. As shown in Fig. 2(a), the saliency

map produced by ICL would indicate three salient regions in-

side the image. Therefore, without additional information,
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Fig. 2. (a) The saliency map generated by by the Incremental Coding Length (ICL) algorithm [14] and the corresponding input

image. (b) The saliency map generated by our algorithm for the same input image as in (a), using the image shown in (c) as the

reference for the common object.

the salient regions cannot be specifically defined. It is not

trivial to single out a specific object based on the saliency

map alone, and the region contains the highest saliency val-

ues may not be the one of interest. As shown in Fig. 2(b),

using the co-saliency information provided by the image in

Fig. 2(c), our algorithm successfully finds the location of the

common salient object.

More experimental results are shown in Fig. 3. Each set

of the results presents a pair of input images and their co-

saliency maps. For comparison, Fig. 4 illustrates the saliency

maps produced by ICL for the same image data. As can be

seen, our algorithm is indeed capable of singling out the com-

mon salient objects, which are present in both paired images,

using the co-saliency information.

4. CONCLUSION

We have presented a simple progressive algorithm to achieve

preattentive co-saliency detection. As shown in the experi-

mental results, our algorithm is effective in identifying the

common salient objects inside pairs of input images. If only

a single input image is given, it would not be easy to decide

which object is the most salient one among many possible

candidates. With the additional companion image as a hint,

our algorithm can simultaneously locate the co-salient object

inside both input images. The computation of preattentive

co-saliency detection using our algorithm is straightforward

and fast. We expect that our algorithm can also be readily in-

corporated into other applications such as video analysis as a

pre-processing step.
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Fig. 3. Results of co-saliency detection using our algorithm. Each set of the results shows a pair of input images and the

corresponding co-saliency maps. Note that, if only a single input image is given, it would not be easy to decide which object

is the most salient one among many possible candidates, see Fig. 4 for comparison. It is the additional information provided

by the companion image that makes the problem more specific. Our algorithm is able to use the joint information to inhibit the

responses of other salient objects that appear in only one of the image. As a result, the proposed algorithm is quite effective in

singling out the co-salient objects.
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Fig. 4. Results of saliency detection using ICL. Generally a saliency map produced by ICL would present several salient

regions. It is not trivial to single out a salient object based on the saliency map.
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