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ABSTRACT

Estimating human age from brain MR images is useful for
early detection of Alzheimer’s disease. In this paper we pro-
pose a fast and accurate method based on deep learning to
predict subject’s age. Compared with previous methods, our
algorithm achieves comparable accuracy using fewer input
images. With our GPU version program, the time needed to
make a prediction is 20 ms. We evaluate our methods using
mean absolute error (MAE) and our method is able to predict
subject’s age with MAE of 4.0 years.

Index Terms— MRI, T1-weighted image, deep learning,
age estimation, brain-aging

1. INTRODUCTION

As a human gets older, the structure of brain changes. Pre-
vious researches show that neurodegenerative diseases such
as Alzheimer’s disease (AD) or Parkinson’s disease are as-
sociated with defective autophagy and usually result in brain
atrophy [1, 2]. By comparing the actual age and the age es-
timated from brain MR images, a computer can help to iden-
tify if someone is a possible AD patient. In order to iden-
tify possible patients as early as possible, an accurate predic-
tion method is needed. The most popular technology to scan
the internal structure of human body is MRI. MRI scanner
uses strong magnetic fields and radio waves to detect the re-
sponse strength from different tissue. Several types of MR
images can be computed from the response signal using dif-
ferent weighting methods. One of the weighting methods
is T1-weighted image, and for human brain, the image can
be further segmented into gray matter (GM), white matter
(WM), and celebrospinal fluid (CSF) regions. Most of ex-
isting age predicting methods [3, 4] take one or more region
masks as the input. Here we propose a method that takes
raw T1-weighted images as input to reduce possible informa-
tion loss during GM / WM / CSF segmentation. The method
proposed in [4] uses segmented GM image following by rele-

vance vector machine (RVM) to predict subject’s age. In [3],
they select important brain regions based on brain atlas map
for better prediction accuracy. However, the execution time
of their method increases if the number of selected regions
increases. In this paper we propose a method that is fast and
accurate compared to [3, 4].

2. THE DATASET

The dataset is provided by Aoba brain image research cen-
ter and Sendai Tsurugaya project. All brain MR images are
T1-weighted and gathered by 0.5T MR modalities. We select
the brain images of healthy subjects among 20 to 80 years
old. There are total 1099 subjects after the selection process.
We randomly choose 600 subjects for training and the other
subjects are used for evaluation. The spatial resolution of the
original data for each subject is a grid of 256×256×124 vox-
els. Following [3], all of the images are aligned and cropped
with ICBM152 template by the MATLAB package SPM2.
The new size of the data becomes 189×157×124 voxels. In
the following, we denote Xi the aligned images and yi the
age of subject i. Also, we use slices to represent transverse
planes in the following literature.

3. METHOD

Given input MR images Xi of subject i, our algorithm pre-
dicts the subject’s age ŷi, i ∈ {1, 2, · · · , N}, where N is the
number of training data. Each Xi contains S slices of the
subject’s brain images. We use X

(s)
i , s ∈ {1, 2, · · · , S} to

denote a certain image slice.
The neural network function is defined as ŷi = f(Xi;W),

where W is the learnable parameter in the convolutional lay-
ers and the fully connected layers. We treat the prediction
task as a regression problem and use

L =
∑
i

|yi − f(Xi,W)|22 (1)



Fig. 1: The first part of our network architecture. Also known as feature extractor. The input slices are represented by the
leftmost stacks. After the operations, the information in the slices is represented by a 3× 2× 128 tensor. Each operation (conv,
maxpool) is associated with a stride parameter, which controls how many units the filter shifts at a time. After training, the filter
of the convolution will be learned. Note that due to page layout, the number of slices shown in this figure is not accurate and
the last 3 fully connected layers are not drawn.

as our objective function. Training the neural network can
be viewed as minimizing the above function with respect to
W . We use back-propagation to get the gradient of the objec-
tive function and update the weight with stochastic gradient
descent.

3.1. Data preprocessing and data augmentation

It is important to preprocess the data so that the neural net-
work converges faster. The standard way is normalization.
Specifically, we make the input data zero mean and unit vari-
ance. We preprocess both the training and testing data using
channel-wise normalization. To do the channel-wise normal-
ization, we first compute

M (s) =
1

N

N∑
i=1

X
(s)
i (2)

for each s-th slice of training data Xi. Also, we compute

σs =
1

N

N∑
i=1

std(X
(s)
i ). (3)

for each channel, where std(·) computes the standard devia-
tion. Finally, for each X

(s)
i , we compute

X̂
(s)
i = (X

(s)
i −M

(s))/σs (4)

as the input of the convolutional neural network.
Since there are only 600 subjects for training, in order to

reduce overfitting and reduce the regression error, we aug-
ment the training set as follows. (i) Randomly sample c from
[0, 10], then crop [c, c,W−c,H−c] from X

(s)
i , and then scale

it back to the original size W ×H . (ii) Randomly sample dx,
dy from [−5, 5], shift the input images with dx, dy, and then
pad the image with zero. (iii) Flip the images horizontally
with a probability of 0.5. Each slice of the brain undergoes
the same cropping/translation parameter in one augmentation
process.

3.2. Network architecture

Our network architecture is based on the idea of VGG net
[5]. VGG net is a well known network architecture for image
classification task. In this paper, we use the power of small
kernel to build the network for regression task. There are 5
convolution layers with 3 × 3 kernel and several maxpooling
layers with stride of 2. Each of the convolutional layer is fol-
lowed by an ReLU activation layer. The last 3 layers are fully
connected layers which blend the parameters to combine the
feature vectors. The output of the network is a scalar, which
indicates the predicted age. Please see Fig. 1 for details.

During development, we discover that there is no need to
use all of the brain images of the subject. The reason is that
mutual information of nearby slices is large. We test several
sparsity configuration and find that we can reduce the input
slices to merely 15 images without hurting performance. We
finally choose slices numbered 31, 39, 47, 55, 63, 71, 79, 87,
95, 103, 111, 119, 127, 135, 143 that contain most of brain
tissue as our input.

3.3. Implementation

The extremely fast execution speed is the strength of our al-
gorithm. With CPU computation environment, the time for
testing is 200 ms for each prediction. If GPU computation en-
vironment is available, the time for testing is 20 ms for each
prediction. Compared with previous methods, our method has
a great improvement over the execution time and achieves bet-
ter accuracy.

Recent deep learning models require large GPU memory
to hold the neural network. Unlike VGG net, with our tailored
network architecture, the GPU memory required is 650MB.
Hence almost all consumer GPUs are capable of running it.
The time needed to train the network is 12 hours (for best
accuracy). To be par with other methods (MAE 4.3), the net-
work only need 0.5 hours to train. All experiments are per-
formed on a PC with Intel i5-4460 CPU and Nvidia TITAN X
GPU. We use torch [6] to train the network.



Hyperparameter value
learning rate 0.0001
learning rate decay 0.0001
weight decay 0.001
momentum 0.9
batch size 16

Table 1: Hyper-parameters used in the experiment.

Method MAE Time[hour]
Franke et al. [4] 4.61 -
Kondo et al. [3] 4.32 0.0032
Proposed (GPU) 4.0 5× 10−6

Proposed (CPU) 4.0 5× 10−5

Table 2: Testing result. The computation time of the pro-
posed method is 64 times faster than [3]. By using GPU, the
speedup is 640 times faster.

3.4. Training

In this section, we describe the details for training the neural
network. Here we explain learning rate decay and weight
decay. Learning rate decay defines the speed to slowdown the
step for the stochastic gradient descent algorithm. If this value
is large, the training procedure converges to a local minimum
fast. On the other hand, if this value is small, the training
procedure converges slower, but will usually achieve better
local minimum. Weight decay is used for regularization, if
this value is large, the network will be less overfitted to the
training data. The hyper-parameter used to train the neural
network is listed in Table 1.

4. EXPERIMENT RESULTS

We follow the criterion used in [3] for comparison. Specifi-
cally, the criterion mean absolute error, MAE, is defined as

E =
1

N

N∑
i=1

|yi − f(Xi,W)|. (5)

We run our experiment for 10 times. Each time, we ran-
domly sample 600 subjects as training data and use the other
499 subjects as testing data. We show the decrease of error in
one of the trials in Fig. 3. The reported MAE in Table 2 is
averaged among the ten trials.

4.1. Importance for different part of the brain

To show the influence of different brain locations with respect
to prediction accuracy, we occlude different parts of the brain
before feeding the MR images into the trained network. The
induced prediction error is proportional to the importance of
the occluded region. Two types of occlusions are tested, one

Fig. 2: Visualization of learned critical regions. Left: Error
induced by occluding image parts with 20×20 block. The
max error induced is MAE 4.3. Center: Relative error induced
by occluding image parts with 10×10 block. The max error
induced is MAE 4.04. Right: One of the image slice in the
test set is shown for reference. The lower part of the image
corresponds to face side. (slice number 87)

is occluding the image with a 20×20 block and the other is
with a 10×10 block. Each occlusion block changes its loca-
tion in a sliding window fashion. Fig. 2 shows the accuracy
map after occluding different parts of brain. For the big occlu-
sion size, the largest MAE it induced is around 4.3 (brightest
area, near pineal and choroid plexus), and for regions near the
four corners, since the area has no information and thus has
unchanged MAE around 4.0 (darkest area). For the smaller
occlusion size, there is almost no performance impact. So
we enhance the error map to show the relative importance.
According to the above observation, our neural network has
learned where to look at and has pretty robust performance
dealing with corrupted data. In other words, even if the input
image is not clear enough due to machine condition, we can
still predict the result pretty accurately.

4.2. Training MAE vs. testing MAE

Fig. 3 shows the network learning process. The prediction
error drops to less than 5 years in the first 200 epochs. One
epoch means all training data are fed to the neural network
once. At test time, the test image slices are resampled using
the same method as we used for training data augmentation.
We feed each resampled test image slices into the network
and use the median of the outputs as our final prediction for
certain subject’s age.

5. CONCLUSION

In this paper, we propose a novel method to solve the problem
of age estimation from brain MRI images. Furthermore, we
speed up the computation and achieve good accuracy. In the
future we are looking forward to predicting the age of both
healthy and unhealthy subjects as well.
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Fig. 3: Training error and testing error of one trial.
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(a) For the first convolutional layer, there are 15 kernels
for each output channel (64 in total). We choose one
of the kernel set for visualization. The response map of
each kernel is single channel, hence the original form is
gray image. To enhance the result, we use false color to
visualize the response.

(b) Feature response after conv1 layer. Each response
map is computed by summing up the convolutional re-
sponse of the 15 kernels.

(c) The response map after conv2 can be computed in
the same way. There are totally 192 feature maps in this
layer, only first 72 feature responses are shown.

Fig. 4: Visualization of feature response.


